首页> 外文学位 >Enabling Accurate and Energy-Efficient Context-Aware Systems for Smart Objects using Cellular Signals.
【24h】

Enabling Accurate and Energy-Efficient Context-Aware Systems for Smart Objects using Cellular Signals.

机译:使用蜂窝信号为智能对象启用准确且节能的上下文感知系统。

获取原文
获取原文并翻译 | 示例

摘要

The Internet of Things (IoT) paradigm aims to interconnect a variety of heterogeneous Smart Objects (e.g., sensors, smart devices, home automation equipment) using Machine-to-Machine communications. Smart devices have become one of the primary ways for people to access entertainment and other business applications, both inside and outside of their homes. This has led to two significant problems: substantial increase in monthly wireless data usage, and a rapid drain in smart phone battery life. Another recent trend with small form-factors in devices has lead to a bulk of the device components fused together using adhesives without being exposed to outside world (e.g., battery is glued to panel case or screen without exposing the circuit terminals). This prevents researchers from measuring energy consumption ratings for the different sub-systems in the phone using power monitoring devices.;Smart devices that provide health monitoring, smart home and workplace, enterprise device management, and many others need to constantly sense their context and communicate with the network to collaborate with others. Mobile applications that provide location-specific services require either the absolute or logical location of users in indoor settings. Identifying the context of a user (e.g., in front of the store, suits section, billing counter, home, office, conference room) in a timely and energy-efficient manner is important for the applications to disburse appropriate deals or activate a set of device-specific policies. In all these cases, though sub-meter level accuracy is not required or expected, a practical and an infrastructure-independent solution which can be easily deployed in real world is highly preferred.;In this research, we first analyze the detailed statistical properties of cellular signals in indoor environments and construct a reliable database of cellular signal signatures for different indoor locations. We show that it is feasible to accurately distinguish between neighbouring indoor locations in a reliable and energy-efficient manner. We then profile the energy usage of Wi-Fi in mobile devices under different device screen activation scenarios and quantify the energy wastage due to unnecessary scan and association events under poor link conditions, which to the best of our knowledge has not been reported in previous literature. In our first work, iSha, we develop a fine-grained energy consumption analyzer system to estimate the energy consumption values of specific sub-components in smart devices which eliminates the need for specialized hardware power monitoring equipments.;In our second work, PRiSM, we develop a novel and light-weight signature matching system to automatically discover Wi-Fi hotspots without turning on the Wi-Fi interface in the smart device. It uses signal strengths received from cellular base stations to statistically predict the presence of Wi-Fi and connects directly to the hotspot without scanning. The system continuously learns based on user movement behaviours and auto-tunes its parameters accordingly. Hence, PRiSM, provides a practical and infrastructure-independent system to maximize Wi-Fi data offloading and simultaneously minimize Wi-Fi sensing costs.;In our final work, PILS, we develop a indoor localization system which logically maps the contextual information of the smart device with a specific indoor location using cellular multihoming. We utilize a variety of back-channel parameters such as Received Signal Code Power (RSCP) from 3G radio cellular systems, Reference Signal Received Power (RSRP) and Reference Signal Received Quality (RSRQ) from 4G radio cellular systems in addition to Received Signal Strength (RSS) values from 2G radio cellular systems. We show the effects on location accuracy with using only connected base stations and with neighbouring base stations, self-sourced data and crowd-sourced data. We also show that by choosing a combination of signals from different cellular radio technologies specific to different locations provide better location accuracy than relying on one single radio technology for all indoor locations.;In short, we aim to address three important challenges in ubiquitous and pervasive mobile computing: maximal data offloading from cellular networks to Wi-Fi with minimal energy consumption, fine-grained energy consumption analysis for small form-factor devices, and cost-effective and infrastructure-independent indoor localization system for wide-area IoT networks. We show the effectiveness of our solutions with working system prototypes and real world data analysis results. We also show that our solution methodologies are robust and applicable to all major mobile computing platforms.
机译:物联网(IoT)范例旨在使用机器对机器通信来互连各种异构智能对象(例如传感器,智能设备,家庭自动化设备)。智能设备已成为人们在家中和家庭之外访问娱乐和其他商业应用程序的主要方式之一。这导致了两个重大问题:每月无线数据使用量的大量增加,以及智能手机电池寿命的迅速消耗。装置中具有小尺寸因素的另一最新趋势导致使用粘合剂将大量装置部件熔合在一起而不会暴露于外界(例如,将电池胶粘到面板盒或屏幕上而不暴露电路端子)。这使研究人员无法使用电源监控设备来测量电话中不同子系统的能耗等级。提供健康监控,智能家居和工作场所,企业设备管理以及许多其他设备的智能设备需要不断地感知其环境并进行通信与网络与他人合作。提供位置特定服务的移动应用程序需要在室内设置中用户的绝对位置或逻辑位置。及时有效地识别用户的环境(例如,在商店,西服区,开票柜台,家庭,办公室,会议室前)对于应用程序分配适当的交易或激活一组交易非常重要。设备特定的策略。在所有这些情况下,尽管不需要或不期望达到亚米级的精度,但高度可取的实用且独立于基础架构的解决方案非常可取,该解决方案可轻松地在现实世界中部署。室内环境中的蜂窝信号,并为不同的室内位置构建可靠的蜂窝信号签名数据库。我们表明,以可靠和节能的方式准确区分相邻的室内位置是可行的。然后,我们分析不同设备屏幕激活情况下移动设备中Wi-Fi的能源使用情况,并量化在不良链接条件下由于不必要的扫描和关联事件导致的能量浪费,据我们所知,以前的文献中尚未对此进行报道。 。在我们的第一项工作iSha中,我们开发了一种细粒度的能耗分析器系统来估算智能设备中特定子组件的能耗值,从而消除了对专用硬件电源监控设备的需求。我们开发了一种新颖,轻巧的签名匹配系统,无需打开智能设备中的Wi-Fi接口即可自动发现Wi-Fi热点。它使用从蜂窝基站接收到的信号强度来统计地预测Wi-Fi的存在,并且无需扫描即可直接连接到热点。该系统根据用户的移动行为不断学习,并相应地自动调整其参数。因此,PRiSM提供了一个实用且与基础架构无关的系统,以最大程度地减少Wi-Fi数据的卸载并同时最大程度地降低Wi-Fi传感的成本。在我们的最终工作PILS中,我们开发了一种室内定位系统,该系统可以逻辑地映​​射无线局域网的上下文信息。使用蜂窝多宿主在特定室内位置的智能设备。除了接收信号强度外,我们还利用各种反向信道参数,例如来自3G无线电系统的接收信号代码功率(RSCP),来自4G无线电系统的参考信号接收功率(RSRP)和参考信号接收质量(RSRQ) 2G无线电蜂窝系统的(RSS)值。我们展示了仅使用连接的基站和相邻基站,自源数据和众包数据对位置精度的影响。我们还表明,通过选择来自特定于不同位置的不同蜂窝无线电技术的信号组合,可以提供比所有室内位置都依靠一种无线电技术更好的定位精度。简而言之,我们旨在解决无处不在和普遍存在的三个重要挑战移动计算:从蜂窝网络到Wi-Fi的最大数据卸载,能耗最低,对小尺寸设备的细粒度能耗分析,以及针对广域IoT网络的经济高效且独立于基础架构的室内本地化系统。我们通过工作系统原型和真实世界的数据分析结果展示了我们解决方案的有效性。我们还表明,我们的解决方案方法是可靠的,适用于所有主要的移动计算平台。

著录项

  • 作者

    Poosamani, Nithyananthan.;

  • 作者单位

    North Carolina State University.;

  • 授予单位 North Carolina State University.;
  • 学科 Computer science.;Computer engineering.;Electrical engineering.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 109 p.
  • 总页数 109
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号