首页> 外文学位 >Segmentation and Classification of Remotely Sensed Images: Object-Based Image Analysis.
【24h】

Segmentation and Classification of Remotely Sensed Images: Object-Based Image Analysis.

机译:遥感图像的分割和分类:基于对象的图像分析。

获取原文
获取原文并翻译 | 示例

摘要

Land-use-and-land-cover (LULC) mapping is crucial in precision agriculture, environmental monitoring, disaster response, and military applications. The demand for improved and more accurate LULC maps has led to the emergence of a key methodology known as Geographic Object-Based Image Analysis (GEOBIA). The core idea of the GEOBIA for an object-based classification system (OBC) is to change the unit of analysis from single-pixels to groups-of-pixels called `objects' through segmentation. While this new paradigm solved problems and improved global accuracy, it also raised new challenges such as the loss of accuracy in categories that are less abundant, but potentially important. Although this trade-off may be acceptable in some domains, the consequences of such an accuracy loss could be potentially fatal in others (for instance, landmine detection).;This thesis proposes a method to improve OBC performance by eliminating such accuracy losses. Specifically, we examine the two key players of an OBC system: Hierarchical Segmentation and Supervised Classification. Further, we propose a model to understand the source of accuracy errors in minority categories and provide a method called Scale Fusion to eliminate those errors. This proposed fusion method involves two stages. First, the characteristic scale for each category is estimated through a combination of segmentation and supervised classification. Next, these estimated scales (segmentation maps) are fused into one combined-object-map. Classification performance is evaluated by comparing results of the multi-cut-and-fuse approach (proposed) to the traditional single-cut (SC) scale selection strategy. Testing on four different data sets revealed that our proposed algorithm improves accuracy on minority classes while performing just as well on abundant categories.;Another active obstacle, presented by today's remotely sensed images, is the volume of information produced by our modern sensors with high spatial and temporal resolution. For instance, over this decade, it is projected that 353 earth observation satellites from 41 countries are to be launched. Timely production of geo-spatial information, from these large volumes, is a challenge. This is because in the traditional methods, the underlying representation and information processing is still primarily pixel-based, which implies that as the number of pixels increases, so does the computational complexity. To overcome this bottleneck, created by pixel-based representation, this thesis proposes a dart-based discrete topological representation (DBTR), where the DBTR differs from pixel-based methods in its use of a reduced boundary based representation. Intuitively, the efficiency gains arise from the observation that, it is lighter to represent a region by its boundary (darts) than by its area (pixels). We found that our implementation of DBTR, not only improved our computational efficiency, but also enhanced our ability to encode and extract spatial information.;Overall, this thesis presents solutions to two problems of an object-based classification system: accuracy and efficiency. Our proposed Scale Fusion method demonstrated improvements in accuracy, while our dart-based topology representation (DBTR) showed improved efficiency in the extraction and encoding of spatial information.
机译:土地利用和土地覆盖(LULC)映射对于精确农业,环境监测,灾难响应和军事应用至关重要。对改进和更精确的LULC地图的需求导致了一种称为基于地理对象的图像分析(GEOBIA)的关键方法的出现。基于对象的分类系统(OBC)的GEOBIA的核心思想是通过分割将分析单位从单个像素更改为称为“对象”的像素组。尽管这种新范式解决了问题并提高了整体精度,但同时也提出了新的挑战,例如在数量不多但潜在重要的类别中丧失准确性。尽管这种权衡取舍在某些领域是可以接受的,但这种准确性损失的后果在其他领域可能是致命的(例如,地雷检测)。;本文提出了一种通过消除此类准确性损失来提高OBC性能的方法。具体来说,我们研究了OBC系统的两个关键角色:分层细分和监督分类。此外,我们提出了一个模型,以了解少数群体类别中准确性误差的来源,并提供一种称为Scale Fusion的方法来消除这些误差。提出的融合方法涉及两个阶段。首先,通过细分和监督分类的组合来估算每个类别的特征量表。接下来,将这些估计的比例尺(分段图)融合为一个组合对象图。通过比较多重切割和融合方法(建议)与传统的单一切割(SC)量表选择策略的结果来评估分类性能。对四个不同数据集的测试表明,我们提出的算法提高了少数类别的准确性,同时在丰富类别上的表现也很好。;今天的遥感图像呈现出的另一个有效障碍是,我们的现代传感器在高空间条件下产生的信息量很大和时间分辨率。例如,在这十年中,预计将发射来自41个国家的353颗地球观测卫星。从如此大量的数据中及时生成地理空间信息是一个挑战。这是因为在传统方法中,基础表示和信息处理仍主要基于像素,这意味着随着像素数量的增加,计算复杂度也随之增加。为了克服由基于像素的表示创建的瓶颈,本文提出了一种基于飞镖的离散拓扑表示(DBTR),其中DBTR与基于像素的方法的区别在于它使用了基于缩减边界的表示。直觉上,效率的提高来自以下观察:用边界(飞镖)表示区域比用面积(像素)表示区域要轻。我们发现,DBTR的实现不仅提高了计算效率,而且增强了编码和提取空间信息的能力。总体而言,本文提出了基于对象的分类系统的两个问题的解决方案:准确性和效率。我们提出的Scale Fusion方法证明了准确性的提高,而我们基于飞镖的拓扑表示(DBTR)在空间信息的提取和编码方面显示出了更高的效率。

著录项

  • 作者

    Syed, Abdul Haleem.;

  • 作者单位

    Rochester Institute of Technology.;

  • 授予单位 Rochester Institute of Technology.;
  • 学科 Remote sensing.;Electrical engineering.;Computer science.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 146 p.
  • 总页数 146
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 公共建筑;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号