首页> 外文学位 >Deformation mechanics and microstructure evolution during microforming of metals
【24h】

Deformation mechanics and microstructure evolution during microforming of metals

机译:金属微成形过程中的变形力学和微结构演变

获取原文
获取原文并翻译 | 示例

摘要

Deformation mechanics including dynamic strain, strain-rate and rotation of material elements and its spatio-temporal scaling behavior was studied using in situ characterization of prototypical microforming operations- Equal Channel Angular Pressing (ECAP), Indirect Extrusion (IE) and Deep Drawing (DD) across length scales (sub-millimeter and micron). Microforming devices including ECAP, IE and DD dies in plane strain condition were designed and fabricated to manifest process outcomes/anomalies in small length-scale deformations for a range of imposed strains: severe (ECAP), moderate (IE) and low (DD). This was captured by conducting in situ experiments on commercially pure metals: Ni 200, Oxygen Free High Conductivity (OFHC) Cu, Al 1100 and Pb.;Set up microforming stages capable of in-situ observation in various length scales were implemented to employ Digital Image Correlation (DIC) technique in order to quantify the mechanics of deformation particularly in deformation zone where the temperature filed captured by in situ Infra-Red (IR) thermography completed the detailed understanding of thermomechanical phenomena prevail in microforming operations. To do this, ECAP and IE devices were designed with a transparent viewing window made of Sapphire block enables the imaging of the material flow during deformation using high-speed (CCD) and IR cameras. While DD of metallic sheets was performed in a microforming setup that sits inside the chamber of Scanning Electron Microscope (SEM) enables in situ characterization of material flow behavior using SEM based DIC. Pre and post--Mortem Microstructure analysis was carried out by performing Orientation Imaging Microscopy (OIM) across the microformed machine elements aiming to correlate spatially evolved microstructures/textures across the deformation zone with the mechanics of deformation obtained by in situ observations for the given materials system. In microforming, variables such as initial microstructure, process configuration and tooling design along with the deformation process parameters are known as crucial factors that determine the deformation behavior of material and therefore the process consequences including failure characteristics and quality of microparts surface finish. In the present dissertation, the effect of process parameters and scaling was studied and the role of characteristics of prior microstructures such as grain size and its distribution, grain morphology, twin size and density, pre-existing textures, etc. and their contribution in improving or disproving the formability was delineated for different deformation geometries and material systems.;These studies revealed the strong dependence of the morphology and characteristics of plastic deformation zone (PDZ) to the process outcomes e.g. microstructure evolution, surface roughening, sudden failure, etc. which are the results of the mechanical/microscopical responses of material to the geometric confinements and strain gradients. The systematic studies of the effect of microscopic/macroscopic boundary conditions allows to determine the presence of any spatial confinement switchover in the mechanism of microscopic material response that will be eventually appeared in the quality of micro-machined components.
机译:使用原型微成形操作的原位表征-等通道角挤压(ECAP),间接挤压(IE)和深冲(DD)研究了包括动态应变,应变率和材料元素旋转及其时空缩放行为在内的变形力学)跨度(小于毫米和微米)。设计并制造了包括平面应变条件下的ECAP,IE和DD模具在内的微成型设备,以在一系列施加的应变:重度(ECAP),中度(IE)和低度(DD)的小长度尺度变形中显示工艺结果/异常。这是通过在商业纯金属上进行的原位实验捕获的:Ni 200,无氧高电导率(OFHC)Cu,Al 1100和Pb 。;建立了能够在各种长度范围内进行原位观察的微成型阶段,以采用Digital图像关联(DIC)技术用于量化变形的机理,尤其是在变形区域,在变形区域中,通过原位红外(IR)热成像技术捕获的温度场完成了对微成型操作中普遍存在的热机械现象的详细了解。为此,将ECAP和IE设备设计为具有由蓝宝石块制成的透明观察窗,从而可以使用高速(CCD)和IR摄像机对变形过程中的物料流进行成像。在位于扫描电子显微镜(SEM)腔室内的微成型装置中执行金属板的DD时,可以使用基于SEM的DIC对材料流动行为进行原位表征。通过对微成形机器元件进行定向成像显微镜(OIM)进行模前和后显微组织分析,旨在将变形区域上空间演化的微观结构/纹理与通过给定材料的原位观察获得的变形力学相关联系统。在微成型中,诸如初始微结构,工艺配置和工装设计之类的变量以及变形工艺参数是决定材料变形行为的关键因素,因此决定了工艺后果,包括失效特征和微零件表面光洁度。本文研究了工艺参数和结垢的影响,研究了微观组织特征如晶粒尺寸及其分布,晶粒形态,孪晶尺寸和密度,既存织构等的作用及其在改善中的作用。或针对不同的变形几何形状和材料系统描述了可变形性。这些研究揭示了塑性变形区(PDZ)的形态和特征强烈依赖于工艺结果,例如微观结构演变,表面粗糙,突然破坏等,这是材料对几何限制和应变梯度的机械/微观响应的结果。对微观/宏观边界条件的影响的系统研究允许确定微观材料响应机制中是否存在任何空间限制转换,这些转换最终将出现在微加工部件的质量中。

著录项

  • 作者

    Moradi, Marzyeh.;

  • 作者单位

    University of Pittsburgh.;

  • 授予单位 University of Pittsburgh.;
  • 学科 Materials science.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 121 p.
  • 总页数 121
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号