首页> 外文学位 >Bioadhesion and strength of attachment of neurons to biomaterials, pyrolytic carbon and commercially pure titanium, subjected to radio frequency glow discharge and autoclave sterilization.
【24h】

Bioadhesion and strength of attachment of neurons to biomaterials, pyrolytic carbon and commercially pure titanium, subjected to radio frequency glow discharge and autoclave sterilization.

机译:神经元与生物材料,热解碳和市售纯钛的生物附着力和附着强度,经过射频辉光放电和高压灭菌。

获取原文
获取原文并翻译 | 示例

摘要

Improved electrically conductive biomaterials, that minimize or eliminate encapsulation by fibrous tissue from the generally seen "foreign body reaction", would be beneficial for longer-term reliability of neural electrode stimulation and signal recording functions. Improved soft tissue adhesion and integration with electrode surfaces could favor better electronic signal transfer while also preventing micromotion of the electrodes near and beyond target tissue sites. This investigation selected two conductive biomaterials with good prior records of long-term implant biocompatibility. These included pyrolytic carbon (PyC) as used in synthetic heart valves, and commercially pure titanium (cpTi) as used in osseointegrating dental implants. Surface energy modification by low-temperature sterilizing Radio Frequency Glow Discharge treatment (RFGD) was utilized to obtain better neural cell adhesion strengths. A dense cell-to-substratum implant/microtissue adhesion model was developed by 48-hour plating and culture of approximately 300,000 freshly harvested P3-P4 postnatal rat spiral ganglion neurons on approximately 300 mm 2 areas of standard autoclaved PyC and cpTi specimens, and on identical specimens prepared by 2.5 minutes exposure to RFGD to elevate their surface energies. Material surface properties were documented by Comprehensive Contact Angle measurements for Critical Surface Tension (CST) determination, by stylus profilometry for surface roughness, and supporting characterization by Scanning Electron Microscopy(SEM), Energy Dispersive X-ray analysis (EDS), and Electron Spectroscopy for Chemical Analysis (ESCA). These methods verified that the main effects of the mild RFGDT were reduction of superficial organic contaminants and increased surface oxidation, leading to increased CST values from less than 40 mN/m to greater than 70 mN/m for the autoclaved and RFGDT specimens, respectively. Initially attached cell numbers and neurofilament-antibody-stainable areas were greater for the autoclaved than RFGD specimens, as documented by fluorescence and confocal microscopy followed by quantitative image analysis.;A water-jet impingement technique was utilized to determine differential retention strengths of the initially attached cells, revealing neuron-to-substratum attachment strengths ranging from a low value of 66 dynes/cm2 on conventionally autoclaved PyC to more than 114 dynes/cm2 on RFGD cpTi. Stereomicroscopic inspection of the water-jet impacted cell carpets revealed more effective detachment of cells and sharp, built-up edges of the detachment area margins for autoclaved specimens. In contrast, graded cellular detachment areas and margins in the jet-impacted carpets were observed for the RFGD treated specimens, correlating with findings of greater strengths of cell adhesion to RFGD treated substrata. Future work will focus on determining whether this increased neuronal cell attachment strength can limit or prevent fibrous encapsulation of implanted electrodes to better maintain design values for signal recording and tissue stimulation.
机译:改进的导电生物材料,可以使纤维组织从通常可见的“异物反应”中最小化或消除封装,将有利于神经电极刺激和信号记录功能的长期可靠性。改善的软组织附着力以及与电极表面的整合可能有利于更好的电子信号传输,同时还可以防止电极在目标组织部位附近和之外发生微动。这项研究选择了两种具有长期植入物生物相容性的良好记录的导电生物材料。其中包括用于合成心脏瓣膜的热解碳(PyC),以及用于骨整合型牙科植入物的商业纯钛(cpTi)。利用低温灭菌射频辉光放电处理(RFGD)进行表面能改性,以获得更好的神经细胞粘附强度。通过48小时的电镀和在约300 mm 2的标准高压灭菌PyC和cpTi标本区域上培养约300,000个新鲜收获的P3-P4产后大鼠螺旋神经节神经元,以及在通过暴露于RFGD 2.5分钟以提高其表面能而制备的相同样品。材料表面性质通过综合接触角测量(用于确定临界表面张力(CST)),手写笔轮廓测量法来测量表面粗糙度,并通过扫描电子显微镜(SEM),能量色散X射线分析(EDS)和电子光谱进行表征用于化学分析(ESCA)。这些方法验证了温和RFGDT的主要作用是减少了表面有机污染物并增加了表面氧化,导致高压灭菌和RFGDT样品的CST值分别从小于40 mN / m增加到大于70 mN / m。高压和共聚焦显微镜观察,然后进行定量图像分析,高压灭菌后的原始附着细胞数和神经丝抗体可染面积要大于RFGD标本。水喷射撞击技术用于确定最初的差异保留强度附着的细胞,揭示了神经元与基质之间的附着强度,范围从常规高压灭菌的PyC的66达因/ cm2的低值到RFGD cpTi的114达因/ cm2的低值。立体显微镜检查喷水冲击的细胞地毯显示,对于高压灭菌的样品,细胞更有效地分离,分离区域边缘的尖锐堆积边缘也很有效。相比之下,对于RFGD处理的标本,观察到有梯度的细胞分离区域和喷射冲击的地毯边缘,这与RFGD处理的基质细胞粘附强度更高的发现相关。未来的工作将集中在确定这种增加的神经元细胞附着强度是否可以限制或阻止植入电极的纤维包囊,从而更好地保持信号记录和组织刺激的设计值。

著录项

  • 作者

    Szymanski, Mark.;

  • 作者单位

    State University of New York at Buffalo.;

  • 授予单位 State University of New York at Buffalo.;
  • 学科 Engineering Biomedical.;Engineering Mechanical.
  • 学位 M.S.
  • 年度 2009
  • 页码 100 p.
  • 总页数 100
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 生物医学工程;机械、仪表工业;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号