首页> 外文学位 >Freezing-induced deformation of biomaterials in cryomedicine.
【24h】

Freezing-induced deformation of biomaterials in cryomedicine.

机译:冷冻医学中生物材料的冷冻诱导形变。

获取原文
获取原文并翻译 | 示例

摘要

Cryomedicine utilizes low temperature treatments of biological proteins, cells and tissues for cryopreservation, materials processing and cryotherapy. Lack of proper understanding of cryodamage that occurs during these applications remains to be the primary bottleneck for development of successful tissue cryopreservation and cryosurgery procedures. An engineering approach based on a view of biological systems as functional biomaterials can help identify, predict and control the primary cryodamage mechanisms by developing an understanding of underlying freezing-induced biophysical processes. In particular, freezing constitutes the main structural/mechanical origin of cryodamage and results in significant deformation of biomaterials at multiple length scales. Understanding of these freezing-induced deformation processes and their effects on post-thaw biomaterial functionality is currently lacking but will be critical to engineer improved cryomedicine procedures. This dissertation addresses this problem by presenting three separate but related studies of freezing-induced deformation at multiple length scales including nanometer-scale protein fibrils, single cells and whole tissues. A combination of rigorous experimentation and computational modeling is used to characterize post-thaw biomaterial structure and properties, predict biomaterial behavior and assess its post-thaw biological functionality. Firstly, freezing-induced damage on hierarchical extracellular matrix structure of collagen is investigated at molecular, fibril and matrix levels. Results indicate to a specific kind of fibril damage due to freezing-induced expansion of intrafibrillar fluid. This is followed by a study of freezing-induced cell and tissue deformation coupled to osmotically driven cellular water transport. Computational and semi empirical modeling of these processes indicate that intracellular deformation of the cell during freezing is heterogeneous and can interfere with cellular water transport, thereby leading to previously unconsidered mechanisms of cell freezing response. In addition, cellular water transport is identified as the critical limiting factor on the amount of freezing-induced tissue deformation, particularly in native tissues with high cell densities. Finally, effects of cryopreservation on post-thaw biological functionality of collagen engineered tissue constructs is investigated where cell-matrix interactions during fibroblast migration are considered as the functional response. Simultaneous cell migration and extracellular matrix deformation are characterized. Results show diminished cell-matrix coupling by freeze/thaw accompanied by a subtle decrease in cell migration. A connection between these results and freezing-induced collagen fibril damage is also suggested. Overall, this dissertation provides new fundamental knowledge on cryodamage mechanisms and a collection of novel multi-purpose engineering tools that will open the way for rational design of cryomedicine technologies.
机译:低温医学利用低温处理的生物蛋白质,细胞和组织进行冷冻保存,材料处理和冷冻治疗。对这些应用过程中发生的冷冻损伤缺乏正确的理解仍然是成功开发组织冷冻保存和冷冻手术程序的主要瓶颈。以生物系统为功能性生物材料的观点为基础的工程方法可通过加深对潜在的冷冻诱导的生物物理过程的理解,帮助识别,预测和控制主要的冷冻损伤机制。特别地,冷冻构成了低温损伤的主要结构/机械起源,并导致生物材料在多个长度尺度上的显着变形。目前尚缺乏对这些冷冻诱导的变形过程及其对融化后生物材料功能的影响的了解,但对于设计改进的低温医学程序至关重要。本论文通过提出三种不同但相关的冷冻诱导变形的研究解决了这个问题,这些研究涉及多种长度尺度,包括纳米尺度的蛋白原纤维,单细胞和整个组织。严格的实验和计算模型的结合用于表征融化后生物材料的结构和性质,预测生物材料行为并评估其融化后生物功能。首先,在分子,原纤维和基质水平上研究了冷冻诱导的胶原对细胞外基质结构的破坏。结果表明由于冷冻诱导的原纤维内流体的膨胀而引起的特定类型的原纤维损伤。接下来是对冷冻诱导的细胞和组织变形与渗透驱动的细胞水传输的耦合研究。这些过程的计算和半经验模型表明,冷冻过程中细胞的细胞内变形是异质的,并且可以干扰细胞的水运输,从而导致以前未曾考虑的细胞冷冻反应机制。另外,细胞水运输被确定为冷冻诱导的组织变形量的关键限制因素,特别是在具有高细胞密度的天然组织中。最后,研究了冷冻保存对胶原蛋白改造的组织构建物解冻后生物学功能的影响,其中成纤维细胞迁移过程中的细胞-基质相互作用被认为是功能性反应。同时细胞迁移和细胞外基质变形的特点。结果显示通过冷冻/融化减少了细胞-基质偶联,伴随着细胞迁移的细微减少。还建议这些结果与冷冻诱导的胶原原纤维损伤之间存在联系。总体而言,本论文为冷冻损伤机理提供了新的基础知识,并提供了一系列新颖的多功能工程工具,这些工具将为冷冻医学技术的合理设计开辟道路。

著录项

  • 作者

    Ozcelikkale, Altug.;

  • 作者单位

    Purdue University.;

  • 授予单位 Purdue University.;
  • 学科 Biomedical engineering.;Nanotechnology.;Mechanical engineering.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 121 p.
  • 总页数 121
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号