首页> 外文学位 >Secure estimation, control and optimization of uncertain cyber-physical systems with applications to power networks.
【24h】

Secure estimation, control and optimization of uncertain cyber-physical systems with applications to power networks.

机译:安全的估计,控制和优化不确定的物理网络系统,并将其应用于电力网络。

获取原文
获取原文并翻译 | 示例

摘要

Transportation networks, wearable devices, energy systems, and the book you are reading now are all ubiquitous cyber-physical systems (CPS). These inherently uncertain systems combine physical phenomena with communication, data processing, control and optimization. Many CPSs are controlled and monitored by real-time control systems that use communication networks to transmit and receive data from systems modeled by physical processes. Existing studies have addressed a breadth of challenges related to the design of CPSs. However, there is a lack of studies on uncertain CPSs subject to dynamic unknown inputs and cyber-attacks---an artifact of the insertion of communication networks and the growing complexity of CPSs.;The objective of this dissertation is to create secure, computational foundations for uncertain CPSs by establishing a framework to control, estimate and optimize the operation of these systems. With major emphasis on power networks, the dissertation deals with the design of secure computational methods for uncertain CPSs, focusing on three crucial issues---(1) cyber-security and risk-mitigation, (2) network-induced time-delays and perturbations and (3) the encompassed extreme time-scales. The dissertation consists of four parts.;In the first part, we investigate dynamic state estimation (DSE) methods and rigorously examine the strengths and weaknesses of the proposed routines under dynamic attack-vectors and unknown inputs. In the second part, and utilizing high-frequency measurements in smart grids and the developed DSE methods in the first part, we present a risk mitigation strategy that minimizes the encountered threat levels, while ensuring the continual observability of the system through available, safe measurements.;The developed methods in the first two parts rely on the assumption that the uncertain CPS is not experiencing time-delays, an assumption that might fail under certain conditions. To overcome this challenge, networked unknown input observers---observers/estimators for uncertain CPSs---are designed such that the effect of time-delays and cyber-induced perturbations are minimized, enabling secure DSE and risk mitigation in the first two parts.;The final part deals with the extreme time-scales encompassed in CPSs, generally, and smart grids, specifically. Operational decisions for long time-scales can adversely affect the security of CPSs for faster time-scales. We present a model that jointly describes steady-state operation and transient stability by combining convex optimal power flow with semidefinite programming formulations of an optimal control problem. This approach can be jointly utilized with the aforementioned parts of the dissertation work, considering time-delays and DSE.;The research contributions of this dissertation furnish CPS stakeholders with insights on the design and operation of uncertain CPSs, whilst guaranteeing the system's real-time safety. Finally, although many of the results of this dissertation are tailored to power systems, the results are general enough to be applied for a variety of uncertain CPSs.
机译:交通网络,可穿戴设备,能源系统以及您现在正在阅读的书都是无处不在的网络物理系统(CPS)。这些固有的不确定系统将物理现象与通信,数据处理,控制和优化结合在一起。实时控制系统控制和监视许多CPS,这些实时控制系统使用通信网络从物理过程建模的系统发送和接收数据。现有研究已经解决了与CPS设计相关的广泛挑战。然而,缺乏关于动态不确定输入和网络攻击下不确定CPS的研究,这是通信网络插入和CPS日益复杂化的产物。本论文的目的是创建安全的,可计算的建立控制,估计和优化这些系统运行的框架,为不确定的CPS提供基础。本文主要着眼于电力网络,致力于不确定CPS的安全计算方法的设计,重点是三个关键问题:(1)网络安全和风险缓解,(2)网络引起的时延和扰动和(3)包含的极端时间尺度。本文共分四个部分:第一部分,研究动态状态估计(DSE)方法,并在动态攻击向量和未知输入的情况下,严格检验了所提出程序的优缺点。在第二部分中,并利用智能电网中的高频测量和第一部分中已开发的DSE方法,我们提出了一种风险缓解策略,该策略可将遇到的威胁级别降至最低,同时通过可用的安全测量来确保系统的持续可观察性..前两部分中开发的方法基于这样的假设:不确定的CPS没有经历时间延迟,这种假设在某些条件下可能会失败。为了克服这一挑战,设计了网络未知输入观察者(不确定CPS的观察者/估计器),以使时间延迟和网络引起的干扰的影响最小化,从而在前两部分实现了安全的DSE和风险缓解最后一部分将讨论CPS(一般而言)和智能电网所包含的极端时间尺度。长时标的操作决策可能会对CPS的安全性产生不利影响,从而缩短时标。我们提出了一个模型,该模型通过结合凸的最优潮流与最优控制问题的半定规划公式,共同描述稳态操作和暂态稳定性。考虑到时间延迟和DSE,可以将这种方法与论文的上述部分结合使用。该论文的研究成果为CPS利益相关者提供了对不确定CPS的设计和操作的见解,同时保证了系统的实时性。安全。最后,尽管本论文的许多结果是针对电力系统量身定制的,但这些结果足够通用,可用于各种不确定的CPS。

著录项

  • 作者

    Taha, Ahmad Fayez.;

  • 作者单位

    Purdue University.;

  • 授予单位 Purdue University.;
  • 学科 Electrical engineering.;Applied mathematics.;Energy.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 220 p.
  • 总页数 220
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号