首页> 外文学位 >Development of Material Characterization Techniques using Novel Nanoindendation Approaches on Hard and Soft Materials used in MEMS.
【24h】

Development of Material Characterization Techniques using Novel Nanoindendation Approaches on Hard and Soft Materials used in MEMS.

机译:使用新颖的纳米化方法在MEMS中使用的硬质和软质材料上开发材料表征技术。

获取原文
获取原文并翻译 | 示例

摘要

Investigating and modeling the mechanical properties of materials is important for many applications. The most common technique used for mechanical characterization of materials is called nanoindentation. The currently available tools utilized in order to perform nanoindentation have their limitations in terms of sensitivities in force and displacement for a broad range of material properties. When it comes to investigation of soft materials, these limitations might be more detrimental. In this dissertation work, novel nanoindentation techniques have been developed with a multi-probe scanning force microscopy (SPM) system in order to ease the major problems encountered with standard Atomic Force Microscopy (AFM) or nanoindentation systems. Tuning forks are used as probes during nanoindentation. By using the newly developed nanoindentation techniques for quasi-static nanoindentation experiments, the force information is extracted through the displacement of the indenter probe measured by a second probe with ultraresolution. For dynamic nanoindentation, frequency modulation techniques have been used to extract force information from a single indenter tuningfork probe. Thanks to the high quality of resonance (Q factor) of tuning fork probes, force measurements can be performed with an ultra high resolution. The accurate measurements of material properties on soft materials is used in characterization of microfabricated pillar sensors which can be used in measuring nN level of cell traction forces in a biomedical application. The techniques developed in this research also enable the system as an ultra-sensitive force sensor to apply nN scale lateral and vertical loads on microfabricated structures or biological specimens.
机译:对材料的机械性能进行调查和建模对于许多应用而言很重要。用于材料机械表征的最常见技术称为纳米压痕。用于执行纳米压痕的当前可用的工具在对于广泛的材料特性的力和位移敏感性方面具有局限性。在研究软材料时,这些局限性可能更有害。在本论文中,为了缓解标准原子力显微镜(AFM)或纳米压痕系统遇到的主要问题,已经开发了具有多探针扫描力显微镜(SPM)系统的新型纳米压痕技术。音叉在纳米压痕过程中用作探针。通过使用新开发的用于准静态纳米压痕实验的纳米压痕技术,通过第二个探针以超分辨率测量的压头探针的位移来提取力信息。对于动态纳米压痕,已使用调频技术从单个压头音叉探针中提取力信息。由于音叉探针具有高质量的共振(Q因子),因此可以超高分辨率执行力测量。在软质材料上精确测量材料性能可用于表征微制造的支柱传感器,该传感器可用于在生物医学应用中测量nN级的细胞牵引力。这项研究中开发的技术还使该系统成为超灵敏力传感器,可以在微细结构或生物样本上施加nN倍的横向和垂直载荷。

著录项

  • 作者

    Cinar, Eyup.;

  • 作者单位

    Rochester Institute of Technology.;

  • 授予单位 Rochester Institute of Technology.;
  • 学科 Nanotechnology.;Electrical engineering.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 160 p.
  • 总页数 160
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 公共建筑;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号