首页> 外文学位 >Genetic Engineering of Plant Seeds to Increase Thiamin (Vitamin B1) Content.
【24h】

Genetic Engineering of Plant Seeds to Increase Thiamin (Vitamin B1) Content.

机译:植物种子的基因工程,以增加硫胺素(维生素B1)的含量。

获取原文
获取原文并翻译 | 示例

摘要

Thiamine (Vitamin B1) in the form of thiamine pyrophosphate (TPP) is an essential cofactor for the function of numerous enzymes which are involved in central metabolism such as citric acid cycle, pentose phosphate pathway, Calvin cycle, isoprenoid biosynthesis, and branched-chain amino acid biosynthesis. All living organisms need thiamine. However, human and animals can synthesize TPP from thiamine, but they are not able to synthesize thiamine de novo. Therefore, human and animals must obtain thiamine from their diet to maintain a normal metabolism. Severe thiamine deficiency causes the lethal disease beriberi and Wernicke-Korsakoff syndrome in humans. The enzymes involved in thiamine de novo biosynthesis pathway are well known in microorganisms and plants, but little is known regarding the salvage pathways in plants. In order to have better insight about the thiamine salvage pathways in plants, the homologs of bacterial ThiM (thiazole kinase) were analyzed. It has been revealed that this protein in plants has thazole kinase activity which is important for thiamine salvage. In addition, analyzing the TenA_E proteins in plants shows that these proteins have amidohydrolase and aminohydrolase activity to form 4-amino-5-hydroxymethyl-2-methylpyrimidine (HMP) from the salvage of thiamine breakdown products. Thiamine plays a vital role in resistance against biotic and abiotic stresses in plants in addition to its role as a cofactor. It has been shown that elevated levels of thiamine content achieved by the seed overexpression of Thi4, ThiC, and ThiE genes can enhance the seed germination and seedlings viability under abiotic stress conditions. Additionally, thiamine and TPP over-producing lines shows altered seed carbon partitioning.
机译:硫胺焦磷酸盐(TPP)形式的硫胺素(维生素B1)是许多参与中央代谢的酶功能的重要辅助因子,这些酶涉及柠檬酸循环,戊糖磷酸途径,卡尔文循环,类异戊二烯生物合成和支链氨基酸生物合成。所有生物都需要硫胺素。然而,人和动物可以从硫胺素合成TPP,但是它们不能从头合成硫胺素。因此,人和动物必须从饮食中获取硫胺素,以维持正常的新陈代谢。严重的硫胺素缺乏会导致人类致命的脚气病和Wernicke-Korsakoff综合征。从头开始的硫胺素生物合成途径中涉及的酶在微生物和植物中是众所周知的,但是对于植物中的拯救途径却知之甚少。为了更好地了解植物中硫胺素的挽救途径,分析了细菌ThiM(噻唑激酶)的同源物。已经发现该植物中的蛋白质具有噻唑激酶活性,这对于硫胺素的挽救很重要。此外,对植物中TenA_E蛋白的分析表明,这些蛋白具有酰胺水解酶和氨基水解酶活性,可以从硫胺素分解产物的回收物中形成4-氨基-5-羟甲基-2-甲基嘧啶(HMP)。硫胺素作为辅助因子,在抵抗植物的生物和非生物胁迫方面起着至关重要的作用。已经表明,通过种子过度表达Thi4,ThiC和ThiE基因达到的硫胺素含量升高,可以增强非生物胁迫条件下的种子发芽和幼苗活力。另外,硫胺素和TPP过量生产系显示出改变的种子碳分配。

著录项

  • 作者

    Yazdani, Mohammad.;

  • 作者单位

    University of Nevada, Reno.;

  • 授予单位 University of Nevada, Reno.;
  • 学科 Biochemistry.;Botany.;Molecular biology.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 152 p.
  • 总页数 152
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号