首页> 外文学位 >Design, Implementation and Control of A High Efficiency Interleaved Flyback Micro-Inverter for Photovoltaic Applications.
【24h】

Design, Implementation and Control of A High Efficiency Interleaved Flyback Micro-Inverter for Photovoltaic Applications.

机译:用于光伏应用的高效交错式反激式微逆变器的设计,实现和控制。

获取原文
获取原文并翻译 | 示例

摘要

Photovoltaic (PV) micro inverters have been gaining attention for the grid-connected PV systems because of improved energy harvest, friendly "Plug-N-Play" operation, and enhanced modularity and flexibility. Various inverter topologies for PV micro-inverters applications have been introduced in the literature that perform the maximum power point tracking (MPPT) of PV module, high step-up voltage amplification, output current shaping, and galvanic isolation. Among them, the flyback based micro-inverter is one of the most attractive solutions due to its simple structure and control and also its inherent galvanic isolation.;The conventional flyback micro-inverter consists of decoupling capacitor, interleaved flyback converter, unfolding bridge, and CL filter. The unfolding bridge is switched at line frequency by a simple square-wave control, generating a rectified sinusoidal waveform at the dc-link between the interleaved flyback converter and unfolding bridge. The decoupling capacitor maintains the power balance between the constant input power and variable output power oscillating at double-line-frequency. All the other functionalities required in PV micro-inverter are performed by the flyback converter. Therefore, the flyback converter has been widely scrutinized to improve its performance in terms of efficiency, reliability, and cost.;The aim of this thesis is to develop a new control and clamping mechanism in order to increase the efficiency of the flyback micro-inverter at the lowest possible cost. To achieve that goal, a hybrid switching strategy is adopted for the inverter. The adopted switching strategy controls the inverter in the Boundary Conduction Mode (BCM) in order to exploit the natural resonance of the flyback transformer to achieve Zero Voltage Switching (ZVS) during the turn-on process. At low load and near the zero-crossing of the grid voltage, the switching frequency of the inverter is then limited by transitioning to Discontinuous Conduction Mode (DCM) to limit the switching loss. Although this hybrid switching strategy ensures the ZCS turn-on for every switching cycle and ZVS turn-on for most of the grid cycle, it does not provide any mechanism to limit the turn-off switching loss, which is the major source of loss in the flyback converter.;In order to limit the turn-off switching loss, a novel adaptive snubber is developed in this thesis which ensures soft switching during the turn-off process. The developed adaptive snubber requires the minimum number of components and operates only at double-line frequency, which makes the control system easy and straight forward. Using the proposed adaptive snubber technology, a maximum efficiency of 96% is achieved.;Based on the proposed adaptive snubber with the associated hybrid switching method, the operation of the inverter is then further optimized in order to achieve the maximum CEC efficiency. The presented efficiency optimization procedure accurately takes into account the transformer and switching losses of the inverter and optimizes the parameters of the hardware and controller. The optimized hardware achieves the CEC efficiency of 94.96%, which is on-par with the available commercial products.
机译:光伏(PV)微型逆变器因改进了能量收集,友好的“即插即用”操作以及增强的模块化和灵活性而在并网光伏系统中获得关注。文献中介绍了用于PV微型逆变器应用的各种逆变器拓扑,这些拓扑执行PV模块的最大功率点跟踪(MPPT),高升压电压放大,输出电流整形和电流隔离。其中,基于反激的微型逆变器由于其简单的结构和控制以及固有的电隔离而成为最有吸引力的解决方案之一;传统的反激微型逆变器由去耦电容器,交错式反激转换器,展开桥和CL滤波器。展开桥通过简单的方波控制以线路频率切换,从而在交错式反激转换器和展开桥之间的直流链路上生成整流正弦波形。去耦电容器可保持恒定输入功率与以双线频率振荡的可变输出功率之间的功率平衡。光伏微型逆变器所需的所有其他功能均由反激式转换器执行。因此,对反激变换器进行了广泛的研究,以提高其效率,可靠性和成本方面的性能。本论文的目的是开发一种新的控制和钳位机制,以提高反激微逆变器的效率。以最低的成本。为了实现该目标,逆变器采用了混合开关策略。所采用的开关策略将逆变器控制在边界传导模式(BCM)中,以便利用反激变压器的自然谐振在导通过程中实现零电压开关(ZVS)。在低负载和接近电网电压过零的情况下,逆变器的开关频率通过转换为非连续导通模式(DCM)来限制开关损耗,从而对其进行限制。尽管这种混合开关策略可确保每个开关周期的ZCS导通和大部分电网周期的ZVS导通,但它没有提供任何机制来限制关断开关损耗,这是损耗的主要来源。为了限制关断开关损耗,本论文开发了一种新型的自适应缓冲器,可确保关断过程中的软开关。开发的自适应缓冲器需要最少的组件数量,并且只能以双线频率工作,这使得控制系统简单而直接。使用所提出的自适应缓冲器技术,可实现最大效率为96%。;基于所提出的自适应缓冲器和相关的混合切换方法,然后进一步优化了逆变器的运行,以实现最大的CEC效率。提出的效率优化程序准确地考虑了逆变器的变压器和开关损耗,并优化了硬件和控制器的参数。经过优化的硬件可实现94.96%的CEC效率,与可用的商用产品相当。

著录项

  • 作者

    Rezaei, Mohammad Ali.;

  • 作者单位

    North Carolina State University.;

  • 授予单位 North Carolina State University.;
  • 学科 Electrical engineering.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 114 p.
  • 总页数 114
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号