首页> 外文学位 >Controlling electromagnetic fields using periodic structures: Gratings, metamaterials, and photonic crystals.
【24h】

Controlling electromagnetic fields using periodic structures: Gratings, metamaterials, and photonic crystals.

机译:使用周期性结构控制电磁场:光栅,超材料和光子晶体。

获取原文
获取原文并翻译 | 示例

摘要

This thesis presents novel devices and techniques that enable new methods for enhancement, concentration, refraction, shaping, collimation, and directive beaming of electromagnetic fields. These unprecedented methods to control electromagnetic fields are achieved by exploring and harnessing the unique wave-interactions in periodic gratings, metamaterials, and photonic crystals, with emphasis on Epsilon-Near-Zero (ENZ) metamaterials and zero-index media. The presented solutions impact a wide variety of applications ranging from microwave to optical frequencies.;A discovery of dramatic radiation enhancement of an invisible array of sources next to a sub-wavelength periodic metal strip grating is reported, both theoretically and experimentally. The phenomenon is first systematically theorized by introducing the 'spectral impulse response' approach for the aperiodic excitation problem, followed by the 'spectral array factor' approach for designing the near-field of array of sources. Such radiation enhancement has applications in sensing, detection, and accurate measurement of distance.;The shaping and collimation of radiation of a simple dipole source near or buried inside a general anisotropic ENZ half-space is then systematically studied using the Lorentz reciprocity method. Various elliptic and hyperbolic anisotropic ENZ media are considered, showing how the air-side radiation can be enhanced and shaped using certain ENZs.;A novel device and technique is proposed for collecting, refracting and concentrating incident waves into an area of high power concentration, at extremely short distances. This flat low-profile light-concentrator comprises a hetero-junction of anisotropic ENZ metamaterials (hyperbolic or elliptic), and is realized with plasmonic layered media at optical frequencies. By harnessing an extremely oblique refraction process in ENZs, the light-concentrator significantly outperforms the size requirements of existing thick high curvature lenses, useful in various applications (e.g. as microlenses). The hetero-junction can also serve as a thin beam-splitter and beam-shifter.;Lastly, the Dirac Leaky-Wave Antenna (DLWA) is introduced for reliable and continuous scanning of directive leaky-wave radiation from photonic crystals. The DLWA is based on a zero-index photonic crystal with a Dirac-type dispersion at its Gamma-point. The DLWA solves the classic open broadside stopband in leaky-wave structures not only at microwaves, but for terahertz and optical frequencies, with feasible dimensions and low losses.
机译:本文提出了新颖的设备和技术,它们为电磁场的增强,集中,折射,整形,准直和定向发射提供了新的方法。通过探索和利用周期性光栅,超材料和光子晶体中独特的波相互作用,重点是Epsilon-Near-Zero(ENZ)超材料和零折射率介质,可以实现这些空前的控制电磁场的方法。提出的解决方案影响了从微波到光频率的各种应用。从理论上和实验上,都报道了在亚波长周期性金属带状光栅旁边的不可见光源阵列显着增强辐射的发现。首先通过引入针对非周期性激励问题的“频谱脉冲响应”方法,然后是用于设计源阵列近场的“频谱阵列因子”方法,对这一现象进行系统地理论化。这种辐射增强在距离的感测,检测和精确测量中具有应用。;然后,使用Lorentz互易方法,系统地研究了接近或掩埋在一般各向异性ENZ半空间内的简单偶极子源的辐射成形和准直。考虑了各种椭圆形和双曲各向异性的ENZ介质,显示了如何使用某些ENZ可以增强和成形空气侧辐射。;提出了一种新颖的设备和技术,用于将入射波收集,折射和集中到高功率集中的区域,在非常短的距离。这种扁平的薄型聚光器包含各向异性的ENZ超材料(双曲线或椭圆形)的异质结,并通过在光频率下的等离激元分层介质实现。通过在ENZ中利用极其倾斜的折射过程,聚光器明显优于现有的厚高曲率透镜的尺寸要求,可用于各种应用(例如微透镜)。异质结也可以用作薄的分束器和移束器。最后,引入了狄拉克(Dirac)泄漏波天线(DLWA),用于对光子晶体的定向泄漏波辐射进行可靠且连续的扫描。 DLWA基于零折射率光子晶体,其Gamma点处具有Dirac型色散。 DLWA不仅解决了微波,而且针对太赫兹和光频率的漏波结构中经典的开放式宽边带阻带,而且尺寸可行且损耗低。

著录项

  • 作者

    Memarian, Mohammad.;

  • 作者单位

    University of Toronto (Canada).;

  • 授予单位 University of Toronto (Canada).;
  • 学科 Electrical engineering.;Electromagnetics.;Optics.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 171 p.
  • 总页数 171
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号