首页> 外文学位 >Fast and Accurate Electronic Structure Methods for Predicting Two- and Three-Body Noncovalent Interactions.
【24h】

Fast and Accurate Electronic Structure Methods for Predicting Two- and Three-Body Noncovalent Interactions.

机译:快速,准确的电子结构方法,用于预测两体和三体非共价相互作用。

获取原文
获取原文并翻译 | 示例

摘要

Noncovalent interactions are ubiquitous in chemistry. As a source of stabilization, they play an important role in many interesting chemical processes, such as protein folding, molecular recognition, molecular self-assembly, physical adsorption, etc. Accurate energy predictions from first principles on many-body systems like molecular crystals requires electronic structure methods able to describe various types of noncovalent interactions like hydrogen bonding, electrostatic, induction, and van der Waals dispersion across different intramolecular conformations and intermolecular arrangements with high and uniform accuracy. Besides accuracy, computational efficiency should be considered for practical applications. Here, fast and accurate electronic methods are developed to treat both two-body and three-body noncovalent interactions.;For two-body interactions, the MP2C method developed by Pitonak and Hesselmann proves to be a reliable method with affordable computational cost. To improve the computational efficiency of MP2C dispersion correction, we propose the use of monomer-centered basis sets instead of dimer-centered ones. For an individual dimer, this change accelerates the dispersion correction several-fold. For molecular crystals, 100-fold speedups for dispersion correction calculation are achieved by utilizing translational symmetry. To improve the computational efficiency of the MP2 part in MP2C method, we demonstrate that one can avoid calculating the unnecessary long-range MP2 correlations by attenuating the Coulomb operator, allowing the dispersion correction to handle the long-range interactions inexpensively. Utilizing excellent fortuitous cancellations between finite basis set errors, attenuation errors and correlation errors, further computational savings could be achieved by the use of small basis set to approach complete basis set limit quality results.;For three-body interactions, which are challenging for many widely-used, low-cost electronic structure methods, we propose a straightforward model that corrects conventional MP2 with a damped three-body Axilrod-Teller-Muto dispersion correction. The damping function compensates for the absence of higher-order dispersion contributions and non-additive short-range exchange terms not found in MP2. Examinations on trimer benchmark set and benzene crystal demonstrate the reliability of this model for various applications.
机译:非共价相互作用在化学中很普遍。作为稳定的来源,它们在许多有趣的化学过程中发挥重要作用,例如蛋白质折叠,分子识别,分子自组装,物理吸附等。根据多体系统(如分子晶体)的第一原理进行准确的能量预测需要电子结构方法能够描述各种类型的非共价相互作用,例如氢键,静电,感应和范德华在不同分子内构象和分子间排列中​​的分散,具有很高的准确性。除精度外,实际应用中还应考虑计算效率。在此,开发了快速准确的电子方法来处理两体和三体非共价相互作用。对于两体相互作用,Pitonak和Hesselmann开发的MP2C方法被证明是一种可靠的方法,具有可承受的计算成本。为了提高MP2C色散校正的计算效率,我们建议使用以单体为中心的基集,而不是以二聚体为中心的基集。对于单个二聚体,此更改将色散校正加快了几倍。对于分子晶体,利用平移对称性可实现100倍的色散校正计算加速。为了提高MP2C方法中MP2部分的计算效率,我们证明了可以通过衰减库仑算子来避免计算不必要的长距离MP2相关性,从而使色散校正能够廉价地处理长距离相互作用。利用有限基集误差,衰减误差和相关误差之间的极好的偶然抵消,通过使用小基集逼近完整的基集极限质量结果,可以进一步节省计算量;对于三体相互作用,这对许多人来说都是具有挑战性的广泛使用的低成本电子结构方法,我们提出了一个简单的模型,该模型可以通过阻尼三体Axilrod-Teller-Muto色散校正来校正常规MP2。阻尼功能可补偿在MP2中找不到的高阶色散贡献和非可累加的短程交换项。通过对三聚物基准仪和苯晶体的测试证明了该模型在各种应用中的可靠性。

著录项

  • 作者

    Huang, Yuanhang.;

  • 作者单位

    University of California, Riverside.;

  • 授予单位 University of California, Riverside.;
  • 学科 Physical chemistry.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 131 p.
  • 总页数 131
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号