首页> 外文学位 >Modelling and experimental results on stochastic model reduction, protein maturation, macromolecular crowding, and time-varying gene expression.
【24h】

Modelling and experimental results on stochastic model reduction, protein maturation, macromolecular crowding, and time-varying gene expression.

机译:关于随机模型还原,蛋白质成熟,大分子拥挤和时变基因表达的建模和实验结果。

获取原文
获取原文并翻译 | 示例

摘要

Gene expression, which connects genomic information to functional units in living cells, has received substantial attention since the completion of The Human Genome Project. Quantitative characterization of gene expression will provide valuable information for understanding the behavior of living cells, and possibilities of building synthetic gene circuits to control or modify the behavior of naturally occurring cells. Many aspects of quantitative gene expression have been studied, including gene expression dynamics and noise in E. coli. The gene expression process itself is stochastic, and modelling approaches have been broadly used to study gene expression noise; however, stochastic gene expression models are usually large and time intensive to simulate. To speed up simulations, we have developed a systematic method to simplify gene expression models with fast and slow dynamics, and investigated when we can ignore the gene expression from the background genome when modelling the gene expression from plasmids. When modelling the noise in gene expression, one usually neglected aspect is the slow maturation process of fluorescent proteins, necessary for the protein to give out fluorescence after it is produced. By modelling, we show that the maturation steps can bring large changes to both the mean protein number and the noise in the model. An unstudied aspect of gene expression dynamics is the time dependent gene expression behavior in E. coli batch culture. Contrary to the usual assumption, we have found, in E. coli batch culture gene expression, that there is no steady state in terms of both the mean number of proteins and the noise. Negative feedback is thought to be able to reduce the noise in a system, and experiments have shown that negative feedback indeed suppresses the noise in gene expression, but the modelling shows that negative feedback will increase the noise. We have found that the increase of noise by feedback is due to the exclusion of extrinsic noise from the model, and that negative feedback will suppress the extrinsic noise while increasing the intrinsic noise. Living cells are crowded with macro-molecules, which will, predicted by modelling, make the reaction constant time dependent. Our experimental observation has confirmed this prediction.
机译:自人类基因组计划完成以来,将基因组信息连接到活细胞中功能单元的基因表达受到了广泛关注。基因表达的定量表征将为理解活细胞的行为提供有价值的信息,并为构建合成基因电路来控制或改变天然细胞的行为提供可能性。已经研究了定量基因表达的许多方面,包括大肠杆菌中的基因表达动力学和噪声。基因表达过程本身是随机的,建模方法已被广泛用于研究基因表达噪声。但是,随机基因表达模型通常较大且需要大量时间进行模拟。为了加快仿真速度,我们开发了一种系统的方法来简化具有快速和慢速动力学的基因表达模型,并研究了在对质粒的基因表达进行建模时何时可以忽略背景基因组的基因表达。在对基因表达中的噪声进行建模时,通常被忽略的一个方面是荧光蛋白的缓慢成熟过程,这是蛋白质产生后发出荧光所必需的。通过建模,我们表明成熟步骤可以带来平均蛋白质数量和模型中噪声的巨大变化。基因表达动力学的一个尚未研究的方面是大肠杆菌分批培养中的时间依赖性基因表达行为。与通常的假设相反,我们发现在大肠杆菌分批培养基因表达中,就蛋白质的平均数量和噪音而言,都没有稳态。负反馈被认为能够减少系统中的噪声,实验表明负反馈确实可以抑制基因表达中的噪声,但是建模表明负反馈会增加噪声。我们已经发现,通过反馈增加噪声是由于从模型中排除了外部噪声,并且负反馈将在增加固有噪声的同时抑制外部噪声。活细胞中充满了大分子,通过建模可以预测,大分子将使反应恒定地依赖时间。我们的实验观察已经证实了这一预测。

著录项

  • 作者

    Dong, Guangqiang.;

  • 作者单位

    University of Toronto (Canada).;

  • 授予单位 University of Toronto (Canada).;
  • 学科 Biophysics.;Bioinformatics.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 161 p.
  • 总页数 161
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号