首页> 外文学位 >Design of scaled electronic devices based on III-V materials.
【24h】

Design of scaled electronic devices based on III-V materials.

机译:基于III-V材料的缩放电子设备设计。

获取原文
获取原文并翻译 | 示例

摘要

One of the challenges faced by the continuous scaling of MOSFETs, is to reconcile the demands for both high speed performance and low power dissipation. The device design space to meet these two criteria using conventional embodiment of the Si bulk MOSFET structure is gradually shrinking, and thus the conventional embodiment may not be able to support the scaling towards the end of the SIA roadmap. In this dissertation, a viable solution from device design perspective to extend the semiconductor device scaling is envisioned, by exploiting the superior material properties and material versatility of the III-V semiconductor family. On a short term basis, by replacing the Si material by high mobility III-V material (such as InGaAs) may help address the demand for high speed performance. The device involved here continues the theme of planar structure with fully depleted thin body. Various design issues are addressed in the dissertation associated the introduction of the new materials. On the intrinsic device side, much attention has been given to the reduced density of states (DOS) associated with these low effective mass materials. Analysis and discussions are presented here that illustrate device design strategies to circumvent the drawbacks resulting from the small DOS. On the extrinsic side, the incorporation of high-k dielectric has led to non-ideal characteristics at the semiconductor/dielectric interface, which is analyzed in the dissertation to assist in pinpointing the associated technical problem. For further scaling, more attention must be directed to the control of short channel effects (SCEs). Therefore, the natural next step from a planar III-V MOSFET may be a nanowire III-V MOSFET that takes advantage of gate-all-around configuration. However, due to the one dimensional nature of the nanowire, the device performance must be reevaluated with 1-D transport physics. To further proceed, especially to curb the power consumption, it is necessary to scale down the supply voltage, which however undermines performance traditionally. To reconcile these requirements, a tunneling FET based on III-V staggered heterojunctions is introduced. Simulation study has shown that significant current (∼0.4mA/mum) may be achieved over a supply voltage of 0.3V with 104 on-off ratio. In summary, in this dissertation, a variety of feasible solutions towards the end of roadmap from device design perspective are presented.
机译:MOSFET的连续缩放面临的挑战之一是兼顾对高速性能和低功耗的需求。使用Si体MOSFET的常规实施例来满足这两个标准的器件设计空间正在逐渐缩小,因此常规实施例可能无法支持朝着SIA路线图的末端进行缩放。在本文中,从器件设计的角度出发,通过开发III-V半导体家族的优异材料性能和材料多功能性,构想出一种可行的解决方案,以扩展半导体器件的规模。从短期来看,用高迁移率的III-V材料(例如InGaAs)代替Si材料可能有助于满足对高速性能的需求。此处涉及的设备延续了薄型机身完全耗尽的平面结构主题。在与新材料的引入相关的论文中,解决了各种设计问题。在固有设备方面,与这些低有效质量材料相关的状态密度(DOS)的降低已引起了很多关注。此处进行的分析和讨论说明了可避免小型DOS产生的缺点的设备设计策略。在非本征方面,高k电介质的引入导致了半导体/电介质界面的非理想特性,本文对此进行了分析,以帮助查明相关的技术问题。为了进一步扩展,必须更多地注意控制短通道效应(SCE)。因此,采用平面III-V MOSFET的自然下一步可能是利用全方位栅极配置的纳米线III-V MOSFET。但是,由于纳米线的一维性质,必须使用一维传输物理学来重新评估设备性能。为了进一步进行,特别是为了抑制功耗,必须缩小电源电压,但是传统上这会损害性能。为了满足这些要求,引入了基于III-V交错异质结的隧道FET。仿真研究表明,在0.3V的电源电压下,开/关比为104时,可以实现大电流(〜0.4mA / mum)。综上所述,本文从设备设计的角度出发,提出了多种可行的解决方案。

著录项

  • 作者

    Wang, Lingquan.;

  • 作者单位

    University of California, San Diego.;

  • 授予单位 University of California, San Diego.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 273 p.
  • 总页数 273
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号