首页> 外文学位 >Model reduction and feedback control of transitional channel flow.
【24h】

Model reduction and feedback control of transitional channel flow.

机译:模型转换和过渡通道流量的反馈控制。

获取原文
获取原文并翻译 | 示例

摘要

This dissertation examines the use of reduced-order models for design of linear feedback controllers for fluid flows. The focus is on transitional channel flow, a canonical shear flow case with a simple geometry yet complex dynamics. Reduced-order models of the linearized Navier-Stokes equations, which describe the evolution of perturbations in transitional channel flow, are computed using two methods for snapshot-based balanced truncation, Balanced Proper Orthogonal Decomposition (BPOD) and Eigensystem Realization Algorithm (ERA). The performance of these models in feedback control is evaluated in both linearized and nonlinear Direct Numerical Simulations (DNS) of channel flow.;The first part of the dissertation describes the application of BPOD to very large systems, and the detailed evaluation of the resulting reduced-order models. Exact balanced truncation, a standard method from control theory, is not computationally tractable for very large systems, such as those typically encountered in fluid flow simulations. The BPOD method, introduced by Rowley (2005), provides a close approximation. We first show that the approximation is indeed close by applying the method to a 1-D linear perturbation to channel flow at a single spatial wavenumber pair, for which exact balanced truncation is tractable. Next, as the first application of BPOD to a very high-dimensional linear system, we show that reduced-order BPOD models of a localized 3-D perturbation capture the dynamics very well. Moreover, the BPOD models significantly outperform standard Proper Orthogonal Decomposition (POD) models, as illustrated by a striking example where models using the POD modes that capture most of the perturbation energy fail to capture the perturbation dynamics.;Next, reduced-order models of a complete control system for linearized channel flow are obtained using ERA, a computationally efficient method that results in the same reduced-order models as BPOD. Linear Quadratic Gaussian (LQG) compensators, which include a reduced-order estimator based on a small number of velocity measurements, are designed for these models and used for feedback control of the energy growth of a localized perturbation near the channel wall. The performance of both a localized body-force near the channel wall and wall blowing/suction as actuation mechanisms is first studied in linearized DNS. It is found that the linear compensators are successful in reducing the growth of the perturbation energy, and that the body force actuation results in a larger decrease of the perturbation energy growth than actuation using wall blowing/suction. We then proceed to show that these compensators are also able to prevent transition to turbulence for nonlinear simulations in some cases, despite performance limitations imposed by the spatial separation of the perturbation and the actuator.;Finally, since it is found that a fundamentally nonlinear mechanism of transition is not captured by the linear models, it is of interest to study nonlinear models for flow control. As a first step towards investigating nonlinear balanced truncation models of channel flow, a method for empirical nonlinear balanced truncation proposed by Lall et al. (2002) is tested on a nonlinear 1-D model problem, the Complex Ginzburg-Landau (CGL) equation. The performance of the resulting models is compared to the performance of nonlinear models obtained by projection of the full equation onto modes computed via balanced truncation of the linear part of the CGL equation. It is found that the models obtained by the latter approach are not only able to capture the dynamics of the nonlinear CGL equation, but that they also outperform the models obtained using the empirical nonlinear balanced truncation method.
机译:本文研究了降阶模型在流体流动线性反馈控制器设计中的应用。重点是过渡通道流动,这是一种具有简单几何形状但复杂动力学的规范剪切流工况。线性化的Navier-Stokes方程的降阶模型使用两种基于快照的平衡截断方法,平衡固有正交分解(BPOD)和特征系统实现算法(ERA)来计算,该模型描述了过渡通道流中扰动的演变。在信道流的线性和非线性直接数值模拟(DNS)中评估了这些模型在反馈控制中的性能。论文的第一部分描述了BPOD在超大型系统中的应用,并对由此产生的结果进行了详细的评估。订单模型。精确的平衡截断是控制理论的一种标准方法,对于非常大的系统(例如,在流体流动模拟中通常遇到的系统),在计算上难以处理。 Rowley(2005)引入的BPOD方法提供了近似值。我们首先表明,通过将方法应用于一维线性扰动来逼近单个空间波数对上的通道流,逼近确实很接近,对于该维数,精确的平衡截断很容易处理。接下来,作为BPOD在超高维线性系统中的第一个应用,我们证明了局部3-D扰动的降阶BPOD模型可以很好地捕获动力学。此外,BPOD模型明显优于标准的Proper Orthogonal Decomposition(POD)模型,如一个引人注目的示例所示,其中使用POD模式捕获大部分微扰能量的模型无法捕获微扰动力学。使用ERA可获得用于线性化通道流的完整控制系统,这是一种计算有效的方法,可产生与BPOD相同的降阶模型。针对这些模型设计了线性二次高斯(LQG)补偿器,其中包括基于少量速度测量值的降阶估计器,并用于反馈控制通道壁附近局部扰动的能量增长。首先在线性化DNS中研究了通道壁附近的局部体力和作为驱动机制的壁吹/吸的性能。已经发现,线性补偿器在减少扰动能量的增长方面是成功的,并且与使用壁吹/吸动的致动相比,体力致动导致了扰动能量的增长更大的减小。然后我们继续表明,在某些情况下,尽管由于扰动和执行器的空间分离而导致性能受到限制,但这些补偿器也能够防止非线性模拟过渡到湍流。最后,由于发现了一种根本上是非线性的机制线性模型无法捕获过渡过程,因此研究非线性模型进行流量控制很有意义。作为研究通道流非线性平衡截断模型的第一步,Lall等人提出了一种经验非线性平衡截断方法。 (2002年)在非线性一维模型问题上进行了测试,这是复杂的Ginzburg-Landau(CGL)方程。将所得模型的性能与通过将完整方程式投影到通过CGL方程的线性部分的平衡截断而计算出的模式上所获得的非线性模型的性能进行比较。发现通过后一种方法获得的模型不仅能够捕获非线性CGL方程的动力学,而且它们也优于使用经验非线性平衡截断法获得的模型。

著录项

  • 作者

    Ilak, Milos.;

  • 作者单位

    Princeton University.;

  • 授予单位 Princeton University.;
  • 学科 Engineering Aerospace.;Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 209 p.
  • 总页数 209
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号