首页> 外文学位 >Engineering design elements of a two-phase thermosyphon to transfer nuclear thermal energy to a hydrogen plant.
【24h】

Engineering design elements of a two-phase thermosyphon to transfer nuclear thermal energy to a hydrogen plant.

机译:两相热虹吸管的工程设计元素,用于将核热能传递给氢装置。

获取原文
获取原文并翻译 | 示例

摘要

Two hydrogen production processes, both powered by Next Generation Nuclear Plant (NGNP), are currently under investigation at the Idaho National Laboratory. The first is high-temperature steam electrolysis utilizing both heat and electricity and the second is thermo-chemical production through the sulfur-iodine process primarily utilizing heat. Both processes require high temperature (>850°C) for enhanced efficiency; temperatures indicative of NGNP. Safety and licensing mandates prudently dictate that the NGNP and the hydrogen production facility be physically isolated, perhaps requiring separation of over 100m. There are several options to transferring multi-megawatt thermal power over such a distance. One option is simply to produce only electricity, transfer by wire to the hydrogen plant, and then reconvert the electric energy to heat via Joule or induction heating. Electrical transport, however, suffers energy losses of 60-70% due to the thermal to electric conversion inherent in the Brayton cycle. A second option is thermal energy transport via a single-phase forced convection loop where a fluid is mechanically pumped between heat exchangers at the nuclear and hydrogen plants. High temperatures, however, present unique materials and pumping challenges. Single phase, low pressure helium is an attractive option for NGNP, but is not suitable for a single purpose facility dictated to hydrogen production because low pressure helium requires higher pumping power and makes the process very inefficient. A third option is two-phase heat transfer utilizing a high temperature thermosyphon. Heat transport occurs via evaporation and condensation, and the heat transport fluid is re-circulated by gravitational force. Thermosyphon has the capability to transport heat at high rates over appreciable distances, virtually isothermally and without any requirement for external pumping devices.;For process heat, intermediate heat exchangers (IHX) are desired to transfer heat from the NGNP to the hydrogen plant in the most efficient way possible. The production of power at higher efficiency using Brayton Cycle, and hydrogen production requires both heat at higher temperatures (up to 1000°C) and high effectiveness compact heat exchangers to transfer heat to either the power or process cycle. The purpose in selecting a compact heat exchanger is to maximize the heat transfer surface area per volume of heat exchanger; this has the benefit of reducing heat exchanger size and heat losses. The IHX design requirements are governed by the allowable temperature drop between the outlet of the NGNP (900°C, based on the current capabilities of NGNP), and the temperatures in the hydrogen production plant. Spiral Heat Exchangers (SHEs) have superior heat transfer characteristics, and are less susceptible to fouling. Further, heat losses to surroundings are minimized because of its compact configuration. SHEs have never been examined for phase-change heat transfer applications. The research presented provides useful information for thermosyphon design and Spiral Heat Exchanger.;This research provides useful insight in making decisions regarding the thermosyphon heat transfer system between the nuclear reactor and chemical plant. Development of very high-temperature reactor technologies for the production of electricity, hydrogen and other energy products is a high priority for a successful national energy future.
机译:爱达荷州国家实验室目前正在研究两种均由下一代核电站(NGNP)供电的制氢工艺。第一种是利用热和电的高温蒸汽电解,第二种是通过主要利用热量的硫碘法进行热化学生产。两种工艺都需要高温(> 850°C)以提高效率。指示NGNP的温度。安全和许可要求谨慎地规定了NGNP和制氢设施必须物理隔离,也许需要相隔100m以上。在这样的距离上传输数兆瓦的热功率有多种选择。一种选择是仅发电,通过电线传输到制氢厂,然后通过焦耳或感应加热将电能重新转换为热量。然而,由于布雷顿循环固有的热电转换,电传输遭受60-70%的能量损失。第二种选择是通过单相强制对流回路进行热能传输,在该回路中,流体被机械地泵送到核电厂和氢电厂的热交换器之间。然而,高温带来了独特的材料和泵送挑战。单相低压氦气对于NGNP来说是一个有吸引力的选择,但不适用于要求制氢的单一目的设施,因为低压氦气需要更高的泵送功率,并且工艺效率非常低。第三种选择是利用高温热虹吸管的两相传热。热传递通过蒸发和冷凝而发生,并且热传递流体在重力的作用下再循环。热虹吸管具有在相当远的距离上以高速率传输热量的能力,实际上是等温的,并且不需要任何外部泵送设备。;对于过程热,需要中间热交换器(IHX)将热量从NGNP传递到氢气装置中的氢气装置中最有效的方法。使用布雷顿循环以更高的效率生产动力,而氢气生产则需要更高温度(最高1000°C)的热量和高效紧凑型热交换器,以将热量传递至动力或工艺循环。选择紧凑型热交换器的目的是使每单位热交换器体积的传热表面积最大化。这具有减小热交换器尺寸和热损失的优点。 IHX设计要求受NGNP出口(根据NGNP的当前能力为900°C)与制氢厂之间的温度之间的允许温降控制。螺旋换热器(SHE)具有出色的传热特性,不易结垢。此外,由于其紧凑的构造,使周围环境的热损失最小。从未针对相变传热应用检查过SHE。提出的研究为热虹吸管的设计和螺旋换热器提供了有用的信息。该研究为做出有关核反应堆与化工厂之间的热虹吸管传热系统的决策提供了有用的见识。开发非常高温的反应堆技术以生产电力,氢气和其他能源产品,是成功实现本国能源未来的高度优先事项。

著录项

  • 作者

    Sabharwall, Piyush.;

  • 作者单位

    University of Idaho.;

  • 授予单位 University of Idaho.;
  • 学科 Engineering Mechanical.;Engineering Nuclear.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 310 p.
  • 总页数 310
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;原子能技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号