首页> 外文学位 >Active control and adaptive estimation of an optically trapped probing system.
【24h】

Active control and adaptive estimation of an optically trapped probing system.

机译:主动控制和自适应估计的光阱探测系统。

获取原文
获取原文并翻译 | 示例

摘要

Due to its capabilities of three-dimensional (3D) non-contact manipulation and measurement with sub-picoNewton force resolution, optical trapping is a modern technique that has been particularly important for studying biological systems under physiological conditions. When a micro/nanoparticle is trapped to serve as the probe for manipulation and measurement, the major limiting factor on the performance of an optical trapping system is the probe's Brownian motion, induced by the persistent random thermal force in the environment. In this research, the design, control, and signal processing of optical trapping systems are investigated to address the problem of Brownian motion and to expand the system's functionality for biological researches.;An optical trapping system, composed of an FPGA-based digital controller, 3D high-speed laser measurement, and 3D rapid laser steering, is developed. The 3D steering actuators consist of a deformable mirror enabling axial actuation and a two-axis acousto-optic deflector for lateral steering. The actuation range is designed and calibrated to be over 20mum along the two lateral axes and over 10mum along the axial direction. The actuation bandwidth along lateral axes is over 50 kHz and the associated resolution is 0.016nm (1sigma). The axial resolution is 0.16nm, while the bandwidth is enhanced to over 3 kHz by model cancellation method.;To enhance the manipulation resolution of the developed system, Brownian motion control is theoretically and experimentally investigated. A 1 st-order ARMAX model describing the Brownian motion of an optically trapped probe is derived for controller design and analysis. The derived model is experimentally validated by proportional control results. An optimal controller based on minimum variance control theory is then designed and implemented. The theoretical analysis is validated by both experiment and simulation to illustrate the performance envelope of active control. Moreover, adaptive minimum variance control is implemented and experimentally verified to be capable of maintaining the optimal control performance in a time-varying environment.;Adaptive estimation is developed to enhance the system's dynamic force probing capability. An adaptive observer is designed using the augmented system model that includes the dynamics of the external interaction and trapping system variation. It recursively estimates the external force and the system parameter from the noisy motion of the probe. Due to the principle of control-estimation separation, its performance of dynamic force sensing is unaffected by the manipulation and control of the system. The force probing is also corrected automatically according to the parameter estimation of the trapping dynamics. From inferring the cause of the variation, additional information of the process under investigation can be gained. Kalman filter algorithm is employed to minimize the estimation error of the designed estimator, achieving best linear unbiased and maximum likelihood estimation when the process and measurement noises satisfy the white Gaussian condition.;The potential of the developed optically trapped probing system for biological researches is demonstrated by experiments with living cells. Intracellular trapping of an organelle is accomplished in a living CHO cell, and extracellular experiments of singlepoint cell pushing and cell tapping are performed to measure the mechanical property and/or the topography of living cells. The sample interference to the system's actuation and measurement is eliminated by the modification of the sample holder and the employment of a different measurement optical path. After the non-specific binding of the probe to the cell is prevented, a topography map is obtained on a living MCF-7 cancer cell from multi-location cell tapping. The cell's normal stiffness is also measured simultaneously, which is comparable to that of the trapping system.
机译:由于其具有亚皮牛顿力分辨率的三维(3D)非接触式操纵和测量功能,光学陷波是一种现代技术,对于研究生理条件下的生物系统尤为重要。当捕获微米/纳米颗粒以用作用于操作和测量的探针时,对光捕获系统性能的主要限制因素是探针的布朗运动,该布朗运动是由环境中持续存在的随机热力引起的。在这项研究中,对光学陷波系统的设计,控制和信号处理进行了研究,以解决布朗运动的问题,并扩展了系统的功能以进行生物学研究。;一种光学陷波系统,由基于FPGA的数字控制器组成,开发了3D高速激光测量和3D快速激光操纵。 3D转向执行器包括可变形的镜面和轴向转向的两轴声光偏转器,可变形的镜面可轴向驱动。操纵范围的设计和校准沿两个横向轴超过20mum,沿轴向超过10mum。沿横轴的驱动带宽超过50 kHz,相关的分辨率为0.016nm(1sigma)。轴向分辨率为0.16nm,通过模型消除法将带宽提高到3kHz以上。为了提高已开发系统的操纵分辨率,对布朗运动控制进行了理论和实验研究。推导了描述光学陷阱探针布朗运动的一阶ARMAX模型,用于控制器设计和分析。通过比例控制结果对导出的模型进行实验验证。然后设计并实现了基于最小方差控制理论的最优控制器。通过实验和仿真对理论分析进行了验证,以说明主动控制的性能范围。此外,实现了自适应最小方差控制并进行了实验验证,能够在时变环境中保持最佳控制性能。;开发了自适应估计,以增强系统的动态力探测能力。使用增强的系统模型来设计自适应观察者,该模型包括外部交互的动态和捕获系统的变化。它从探头的嘈杂运动中递归估计外力和系统参数。由于控制估计分离的原理,其动态力感测的性能不受系统操纵和控制的影响。测力还根据捕获动态的参数估计值自动进行校正。通过推断变化的原因,可以获得正在研究的过程的其他信息。采用卡尔曼滤波算法使设计的估计器的估计误差最小,当过程和测量噪声满足白高斯条件时,实现了最佳的线性无偏估计和最大似然估计。证明了开发的光阱探测系统在生物学研究中的潜力通过活细胞的实验在活的CHO细胞中完成细胞器的细胞内捕获,并进行单点细胞推入和细胞敲击的细胞外实验,以测量活细胞的机械性能和/或形貌。通过修改样品架和采用不同的测量光路,可以消除样品对系统启动和测量的干扰。在防止探针与细胞的非特异性结合之后,通过多位置细胞分接获得了活的MCF-7癌细胞的拓扑图。电池的法向刚度也可以同时测量,这与诱捕系统相当。

著录项

  • 作者

    Huang, Yanan.;

  • 作者单位

    The Ohio State University.;

  • 授予单位 The Ohio State University.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 144 p.
  • 总页数 144
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号