首页> 外文学位 >Radio frequency superconducting quantum interference device meta-atoms and metamaterials: Experiment, theory and analysis
【24h】

Radio frequency superconducting quantum interference device meta-atoms and metamaterials: Experiment, theory and analysis

机译:射频超导量子干涉装置的超原子和超材料:实验,理论和分析

获取原文
获取原文并翻译 | 示例

摘要

Metamaterials are 1D, 2D or 3D arrays of artificial atoms. The artificial atoms, called "meta-atoms", can be any component with tailorable electromagnetic properties, such as resonators, LC circuits, nano particles, and so on. By designing the properties of individual meta-atoms and the interaction created by putting them in a lattice, one can create a metamaterial with intriguing properties not found in nature. My Ph. D. work examines the meta-atoms based on radio frequency superconducting quantum interference devices (rf-SQUIDs); their tunability with dc magnetic field, rf magnetic field, and temperature are studied. The rf-SQUIDs are superconducting split ring resonators in which the usual capacitance is supplemented with a Josephson junction, which introduces strong nonlinearity in the rf properties. At relatively low rf magnetic field, a magnetic field tunability of the resonant frequency of up to 80 THz/Gauss by dc magnetic field is observed, and a total frequency tunability of 100% is achieved.;The macroscopic quantum superconducting metamaterial also shows manipulative self-induced broadband transparency due to a qualitatively novel nonlinear mechanism that is different from conventional electromagnetically induced transparency (EIT) or its classical analogs. A near complete disappearance of resonant absorption under a range of applied rf flux is observed experimentally and explained theoretically. The transparency comes from the intrinsic bi-stability and can be tuned on/ off easily by altering rf and dc magnetic fields, temperature and history. Hysteretic in situ 100% tunability of transparency paves the way for auto-cloaking metamaterials, intensity dependent filters, and fast-tunable power limiters. An rf-SQUID metamaterial is shown to have qualitatively the same behavior as a single rf-SQUID with regards to dc flux, rf flux and temperature tuning.;The two-tone response of self-resonant rf-SQUID meta-atoms and metamaterials is then studied here via intermodulation (IM) measurement over a broad range of tone frequencies and tone powers. A sharp onset followed by a surprising strongly suppressed IM region near the resonance is observed. This behavior can be understood employing methods in nonlinear dynamics; the sharp onset, and the gap of IM, are due to sudden state jumps during a beat of the two-tone sum input signal. The theory predicts that the IM can be manipulated with tone power, center frequency, frequency difference between the two tones, and temperature. This quantitative understanding potentially allows for the design of rf-SQUID metamaterials with either very low or very high IM response.
机译:超材料是人造原子的1D,2D或3D阵列。人造原子称为“元原子”,可以是具有可调整电磁特性的任何组件,例如谐振器,LC电路,纳米粒子等。通过设计单个超原子的特性以及将它们放置在晶格中所产生的相互作用,人们可以创建一种具有自然界中未发现的有趣特性的超材料。我的博士论文研究了基于射频超导量子干扰设备(rf-SQUIDs)的准原子;研究了它们在直流磁场,射频磁场和温度下的可调谐性。 rf-SQUID是超导裂环谐振器,其中通常的电容由Josephson结补充,这在rf特性中引入了很强的非线性。在相对较低的rf磁场下,观察到的共振频率通过dc磁场可达到80 THz / Gauss的磁场可调性,并且实现了100%的总频率可调性。;宏观量子超导超材料还显示出操纵性质引起的宽带透明性,是由于与传统的电磁感应透明性(EIT)或其经典类似物不同的定性新型非线性机制所致。在实验中观察到并在理论上解释了在所施加的射频通量范围内共振吸收几乎完全消失。透明性来自于固有的双稳定性,可以通过改变射频和直流磁场,温度和历史来轻松地打开/关闭。透明的迟滞原位100%可调性为自动隐装超材料,强度依赖的滤波器和快速可调的功率限制器铺平了道路。在直流通量,射频通量和温度调节方面,rf-SQUID超材料在质量上表现出与单个rf-SQUID相同的行为;自谐振rf-SQUID超原子和超材料的双音响应为然后通过互调(IM)测量在广泛的音调频率和音调功率范围内进行研究。观察到急剧的起跳,随后在共振附近出现出乎意料的强烈抑制的IM区。使用非线性动力学方法可以理解这种行为。尖锐的起振和IM的间隙是由于在两音和输入信号的脉动期间突然的状态跳跃而引起的。该理论预测,可以通过音调功率,中心频率,两个音调之间的频率差和温度来操纵IM。这种定量的理解潜在地允许设计具有非常低或非常高的IM响应的rf-SQUID超材料。

著录项

  • 作者

    Zhang, Daimeng.;

  • 作者单位

    University of Maryland, College Park.;

  • 授予单位 University of Maryland, College Park.;
  • 学科 Low temperature physics.;Condensed matter physics.;Materials science.
  • 学位 Ph.D.
  • 年度 2016
  • 页码 159 p.
  • 总页数 159
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号