首页> 外文学位 >A STUDY OF HIGH EFFICIENCY THIN THERMOPHOTOVOLTAIC SOLAR CELLS.
【24h】

A STUDY OF HIGH EFFICIENCY THIN THERMOPHOTOVOLTAIC SOLAR CELLS.

机译:高效薄型热光伏太阳能电池的研究。

获取原文
获取原文并翻译 | 示例

摘要

High conversion efficiency of solar energy into electrical energy is possible if the incident radiation is first absorbed by an intermediate absorber and then re-emitted onto a photovoltaic (PV) solar cell. This mode of operation is known as solar thermophotovoltaic (TPV) energy conversion. This thesis explores the limits on performance of TPV systems based on germanium in which the source temperature and the opto-electronic structure of the germanium PV cell are varied and optimized with respect to overall radiant energy conversion efficiency. The principal characteristic of the optimized high efficiency TPV germanium cells is that they are thin p-n junction solar cells which incorporate minority carrier mirrors (MCM) and optical mirrors (OM) at the front and back surfaces of the device examined.; In this study, the role of MCM and OM is studied theoretically by solving the minority carrier diffusion equation in the n- and p-type quasineutral regions of the cell with the appropriate boundary conditions at the end of these regions and an appropriate minority carrier generation function. The high theoretical efficiency calculated for these thin structures derives from the simultaneous use of optical and electronic reflection. The calculations presented here determine the theoretical upper limit to TPV conversion efficiency and show the dependence of this limit on cell geometry, resistivity, surface recombination and input density. In addition, TPV systems based on more than one PV cell, each utilizing a different photovoltaically active semiconductor are also considered.; A number of possible TPV systems are treated within this theoretical framework. When blackbody thermal radiation sources having temperatures in the range 1500-2000 C are considered, the upper limit efficiency is found to be about 22% for an optimum design germanium cell 90 microns thick and about 26% for a two-junction silicon-germanium tandem cell arrangement 50 and 90 microns thick, respectively, both systems receiving an overall input power density of 25 W/cm('2) from a 2000 C blackbody source. The upper limits to the conversion efficiency can be further enhanced if the longer wavelength photons which are not absorbed by the solar cells are recycles (i.e., returning them to the radiator by making the solar cell highly reflective at these wavelengths). The performance of TPV systems in which the radiation emitters are coated with selective absorber-emitters of erbium (Er(,2)O(,3)) and and ytterbium (Yb(,2)O(,3)) oxides is also explored.
机译:如果入射辐射首先被中间吸收器吸收,然后重新发射到光伏(PV)太阳能电池上,则将太阳能转换为电能的效率很高。这种操作模式称为太阳能热光电(TPV)能量转换。本文探讨了基于锗的TPV系统的性能限制,其中锗光伏电池的源温度和光电结构在总辐射能转换效率方面有所变化和优化。优化的高效TPV锗电池的主要特征是,它们是薄的p-n结太阳能电池,在所检查器件的前表面和后表面均包含少数载流子镜(MCM)和光学镜(OM)。在这项研究中,通过求解电池的n型和p型准中性区域中的少数载流子扩散方程,并在这些区域的末端具有适当的边界条件并产生适当的少数载流子,从理论上研究了MCM和OM的作用功能。为这些薄结构计算出的高理论效率源自同时使用光学和电子反射。此处给出的计算确定了TPV转换效率的理论上限,并显示了该上限对电池几何形状,电阻率,表面重组和输入密度的依赖性。此外,还考虑了基于一个以上PV电池的TPV系统,每个均使用不同的光伏活性半导体。在此理论框架内处理了许多可能的TPV系统。当考虑温度在1500-2000 C范围内的黑体热辐射源时,发现对于90微米厚的最佳设计锗电池,其上限效率约为22%,对于两结硅锗串联器件,其上限效率约为26%。电池装置的厚度分别为50和90微米,这两个​​系统从2000 C黑体源接收的总输入功率密度为25 W / cm('2)。如果未被太阳能电池吸收的更长波长的光子被循环利用(即,通过使太阳能电池在这些波长下具有高反射性,则将它们返回到辐射器),则可以进一步提高转换效率的上限。还研究了在TPV系统中辐射发射器涂有r(Er(,2)O(,3))和(Yb(,2)O(,3))氧化物的选择性吸收体发射器的性能。 。

著录项

  • 作者

    VERA, EDUARDO SOBRINO.;

  • 作者单位

    Brown University.;

  • 授予单位 Brown University.;
  • 学科 Physics Condensed Matter.
  • 学位 Ph.D.
  • 年度 1982
  • 页码 157 p.
  • 总页数 157
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 O49;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号