首页> 外文学位 >A POLYA 'SHIRE' THEOREM FOR ENTIRE FUNCTIONS.
【24h】

A POLYA 'SHIRE' THEOREM FOR ENTIRE FUNCTIONS.

机译:整个功能的POLYA“ SHIRE”定理。

获取原文
获取原文并翻译 | 示例

摘要

George Polya first studied the limiting distribution of the zeros of the successive derivatives of an entire or meromorphic function of f. He defined the final set of f to be the set of points z in the complex plane such that every neighborhood of z contains zeros of infinitely many derivatives of f.;Theorem (Polya): If f is meromorphic in the plane and has at least one pole, the final set of f is the union of the boundaries of all the shires.;In effect, the poles of f "repel" the zeros of f('(k)).;Polya (and subsequently R. M. McLeod and A. Edrei) also determined the final sets of certain entire functions. In each of the cases examined by those authors, the function f has large growth on certain rays, and the zeros of f('(k)) (large k) avoid those rays. In others words, the rays "repel" zeros. Proceeding from that observation, we introduce for the first time a notion of "shire" for entire functions--with "pole" replaced by "ray of maximal growth".;For each pole A of f, let the shire of f be the set of points closer to A than to any other pole.;With a suitable definition of "shire" we show that, for a certain class of entire functions f, the final set of f equals the union of the boundaries of all the shires. This class includes many of the examples previously considered, as well as some new ones, such as the Mittag-Leffler Functions (their final sets are void) and certain sums of generalized Mittag-Leffler Functions.;To prove that the final set is contained in the boundaries of the shires, we adapt a saddle point method employed by Edrei and McLeod, which in turn is based on a technique of Hayman.;To prove that every point on the boundaries is in the final set, we determine asymptotically the number of zeros of the k('th) derivative in small disks centered at points on the boundaries, using a slight modification of an argument due to Edrei.
机译:George Polya首先研究了f的全部或亚纯函数的连续导数的零的极限分布。他将f的最终集合定义为复平面上的点z的集合,这样z的每个邻域都包含f的无穷多个导数的零。定理(Polya):如果f在平面上是亚纯的,并且至少具有一个极点,f的最后集合是所有郡的边界的并集。;实际上,f的极点“排斥” f('(k))的零。; Polya(随后是RM McLeod和A (埃德雷(Edrei))还确定了某些完整功能的最终集合。在这些作者检验的每种情况下,函数f在某些射线下都有很大的增长,并且f('(k))的零(大k)避免了这些射线。换句话说,射线“排斥”零。从该观察结果出发,我们首次引入了针对整个功能的“郡”的概念-将“极点”替换为“最大增长射线”。对于f的每个极点A,令f的郡为通过对“郡”的适当定义,我们表明,对于整个函数f的特定类,最终的f集等于所有郡的边界的并集。此类包括许多先前考虑的示例以及一些新示例,例如Mittag-Leffler函数(它们的最终集合为空)和某些广义的Mittag-Leffler函数的总和。在郡的边界中,我们采用了Edrei和McLeod所采用的鞍点方法,而该方法又是基于Hayman的技术。为了证明边界上的每个点都在最终集中,我们渐近确定了数在小圆盘中以边界上的点为中心的第k('th)个导数的零,使用对Edrei引起的自变量进行轻微修改。

著录项

  • 作者

    GETHNER, ROBERT M.;

  • 作者单位

    The University of Wisconsin - Madison.;

  • 授予单位 The University of Wisconsin - Madison.;
  • 学科 Mathematics.
  • 学位 Ph.D.
  • 年度 1982
  • 页码 200 p.
  • 总页数 200
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号