首页> 外文学位 >Microbial Fuel Cells under Extreme Salinity
【24h】

Microbial Fuel Cells under Extreme Salinity

机译:极高盐度下的微生物燃料电池

获取原文
获取原文并翻译 | 示例

摘要

I developed a Microbial Fuel Cell (MFC) that unprecedentedly works (i.e., produces electricity) under extreme salinity (≈ 100 g/L NaCl). Many industries, such as oil and gas extraction, generate hypersaline wastewaters with high organic strength, accounting for about 5% of worldwide generated effluents, which represent a major challenge for pollution control and resource recovery. This study assesses the potential for microbial fuel cells (MFCs) to treat such wastewaters and generate electricity under extreme saline conditions. Specifically, the focus is on the feasibility to treat hypersaline wastewater generated by the emerging unconventional oil and gas industry (hydraulic fracturing) and so, with mean salinity of 100 g/L NaCl (3-fold higher than sea water). The success of this novel technology strongly depends on finding a competent and resilient microbial community that can degrade the waste under extreme saline conditions and be able to use the anode as their terminal electron acceptor (exoelectrogenic capability). I demonstrated that MFCs can produce electricity at extremely high salinity (up to 250 g/l NaCl) with a power production of 71mW/m2. Pyrosequencing analysis of the anode population showed the predominance of Halanaerobium spp. (85%), which has been found in shale formations and oil reservoirs. Promoting Quorum sensing (QS, cell to cell communication between bacteria to control gene expression) was used as strategy to increase the attachment of bacteria to the anode and thus improve the MFC performance. Results show that the power output can be bolstered by adding 100nM of quinolone signal with an increase in power density of 30%, for the first time showing QS in Halanaerobium extremophiles. To make this technology closer to market applications, experiments with real wastewaters were also carried out. A sample of produced wastewater from Barnet Shale, Texas (86 g/L NaCl) produced electricity when fed in an MFC, leading to my discovery of another predominant electroactive and halophile specie in the anode, Marinobacter hydrocarbonoclasticus, which is known for its extraordinary biodegradation capabilities. These findings suggest the potential of the MFC technology to treat hypersaline high-strength wastewaters while producing electricity, a result which would alleviate a major economic and environmental challenge for the oil and gas industry. In addition, this research represents a promising start overall in advancing biological treatment of saline wastewaters in other contexts, which is a largely unexploited field.
机译:我开发了一种微生物燃料电池(MFC),该物质在极高盐度(& 100 g / L NaCl)下可实现前所未有的工作(即发电)。石油和天然气开采等许多行业产生的有机盐含量高的高盐废水,约占全球废水总量的5%,这对污染控制和资源回收提出了重大挑战。这项研究评估了微生物燃料电池(MFCs)在极端盐分条件下处理此类废水并发电的潜力。具体来说,重点是处理由新兴非常规油气行业(水力压裂)等产生的高盐废水的可行性,因此,平均盐度为100 g / L NaCl(比海水高3倍)。这项新技术的成功在很大程度上取决于能否找到一个能干且有弹性的微生物群落,该群落可以在极端盐溶液条件下降解废物,并能够将阳极用作其末端电子受体(外生电子能力)。我证明了MFC可以以71mW / m2的发电量以极高的盐度(高达250 g / l NaCl)发电。阳极群体的焦磷酸测序分析表明,主要的嗜盐菌属。 (85%),发现于页岩地层和储油层中。促进群体感应(QS,细菌之间的细胞间通信以控制基因表达)被用作增加细菌与阳极的附着从而改善MFC性能的策略。结果表明,通过添加100nM喹诺酮信号可增强功率输出,功率密度增加30%,这首次显示了嗜盐气单胞菌的QS。为了使该技术更接近市场应用,还对真实废水进行了实验。得自德克萨斯州巴尼特页岩的废水样本(86 g / L NaCl)在使用MFC时产生了电,这导致我在阳极发现了另一种主要的电活性和嗜盐物种,即碳纤维变形杆菌,它以其非凡的生物降解作用而闻名。能力。这些发现表明,MFC技术在发电时可处理高盐度高强度废水的潜力,这一结果将减轻石油和天然气行业的主要经济和环境挑战。此外,这项研究代表了在其他情况下推进盐水生物处理的整体前景,这是一个尚未开发的领域。

著录项

  • 作者

    Monzon del Olmo, Oihane.;

  • 作者单位

    Rice University.;

  • 授予单位 Rice University.;
  • 学科 Environmental engineering.;Microbiology.;Energy.
  • 学位 Ph.D.
  • 年度 2016
  • 页码 153 p.
  • 总页数 153
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号