首页> 外文学位 >Déposition d'un revêtement organique par voie photochimique sur des particules employées dans le contrôle qualité des médicaments injectables
【24h】

Déposition d'un revêtement organique par voie photochimique sur des particules employées dans le contrôle qualité des médicaments injectables

机译:通过光化学方法在用于注射药物质量控制的颗粒上沉积有机涂层

获取原文
获取原文并翻译 | 示例

摘要

After oral absorption, intravenous injection is considered to be the second most important administration path to administer a medicine. In order to prevent incidents of granulomatosis, pulmonary emboli and venous occlusions with the patient, the automated inspection process in place makes sure that each batch of injectable medicine is free of solid contaminants with diameter exceeding 100 mum. For qualification and periodical validation of the detection system, standardized polystyrene divinylbenzene (PS-DVB) beads of different sizes are seeded inside control syringes to mimic contamination. The low surface energy of the PS-DVB frequently leads to the beads' irreversible adhesion to the inner wall of the container, which prevents them from moving freely inside the solution. As the detection principle relies on contaminant motion inside a suspension, the inspection system is unable to detect adhered beads, and the validation of the system fails. This major issue leads to the frequent replacement of control syringe sets, and since they are difficult and costly to produce, the pharmaceutical industry incurs important losses of both time and money for what should be a simple day-to-day validation step.;The main goal of this project is to solve this issue by forcing the PS-DVB beads to stay in suspension, so their motion is ensured inside a control syringe subjected to agitation. Adhesion is due to the low energy functional groups of the polystyrene, such as the C-C and C-H simple bonds and the aromatic rings. Surface grafting of oxygenated groups (ketone, ether, carboxylic, ester) by free radical polymerization would be an efficient way to integrate electrostatic and steric repulsion effects between the treated beads and the syringe walls. Once the electrostatic and steric repulsion effects overcome the van der Waals attraction effect between the PS-DVB and the wall, the beads would repulse the inner wall and be kept in suspension. The inspection system would then be able to retrace their motion.;Polymerization by chemical vapor deposition (CVD) is a useful technique to treat surfaces in gas phase. This method has the advantages of simplifying downstream treatment and being transposable to higher scales. The substrate to be surface modified is brought into close contact with active chemical species or "precursors". These precursors are activated thanks to a thermal, plasma or luminous energy source. They further adsorb to the substrate and enable the free radical polymerization process. Photo-initiated CVD (PICVD) is the most simple and economical CVD form, as it only requires a low energy input, with UV light being the only polymerization activation source. Moreover, since the energy input is low and the operational conditions are smooth, this method favors a better retention of the grafted functional groups. The principal drawback of PICVD is to find a photo-active initiator that is efficient, versatile and able to absorb energy at reasonable wavelengths of UV light. Fortunately, PS-DVB provides its own free radicals to initiate free radical polymerization. It only needs to be exposed to the UV light of a germicidal lamp operating at 253.7 nm.;In the following work, PICVD is been used in order to graft oxygenated functional groups on PS-DVB beads of sizes ranged between 100 and 500 mum of diameter. Air, ozone and syngas were evaluated as precursors. For each of these, the optimal functionalization protocol was developed according to the results of an experimental plan varying the principal process parameters. Polystyrene films were characterized before and after treatment through goniometry, FTIR, XPS and AFM. Results confirmed the grafting of ketone, hydroxyl, carboxyl, ether and ester groups. Zeta potential calculations and dispersion tests finally indicated that PS-DVB beads were kept in suspension inside control syringes after treatment, contrary to untreated beads. The solution to the adhesion problem as presented in this thesis will allow the pharmaceutical industry to meet the high quality control standards while making a significant economy of both time and money. This solution is also transposable to any other industry facing particle adhesion issues. The principal recommendation for future work would be to extend the functionalization process to native contaminants commonly found in the industry. This will allow production of control syringe sets that would not only be of optimal quality, but which would also be more representative of reality.
机译:口服吸收后,静脉注射被认为是第二种最重要的给药途径。为了防止肉芽肿病,肺栓子和静脉阻塞的发生,自动检查过程确保每批可注射药物中不含直径超过100微米的固体污染物。为了对检测系统进行鉴定和定期验证,将大小不同的标准化聚苯乙烯二乙烯基苯(PS-DVB)珠粒接种在控制注射器内,以模拟污染。 PS-DVB的低表面能经常会导致珠子对容器内壁的不可逆粘附,从而阻止了珠子在溶液中自由移动。由于检测原理依赖于悬浮液内部的污染物运动,因此检测系统无法检测到附着的珠子,并且系统的验证失败。这个主要问题导致控制注射器套件的频繁更换,并且由于制造困难且成本高昂,制药行业因应进行简单的日常验证步骤而蒙受了时间和金钱的重大损失。该项目的主要目标是通过迫使PS-DVB珠保持悬浮状态来解决此问题,因此可以确保它们在搅拌的控制注射器内运动。粘附是由于聚苯乙烯的低能官能团,例如C-C和C-H单键以及芳环。通过自由基聚合对氧化基团(酮,醚,羧酸,酯)进行表面接枝将是在处理过的微珠和注射器壁之间整合静电和空间排斥作用的有效方法。一旦静电和空间排斥作用克服了PS-DVB与墙壁之间的范德华吸引作用,珠粒就会排斥内壁并保持悬浮状态。然后,该检查系统将能够追踪其运动。通过化学气相沉积(CVD)进行的聚合是一种用于处理气相表面的有用技术。该方法的优点是简化了下游处理并且可转位至更高规模。使待表面改性的基材与活性化学物质或“前体”紧密接触。这些前驱物由于热,等离子体或发光能源而被激活。它们进一步吸附到底物上并使自由基聚合过程成为可能。光引发CVD(PICVD)是最简单,最经济的CVD形式,因为它只需要低能量输入,而紫外线是唯一的聚合活化源。此外,由于能量输入低且操作条件平稳,因此该方法有利于更好地保留接枝的官能团。 PICVD的主要缺点是找到一种光敏引发剂,该引发剂高效,用途广泛并且能够在合理的紫外线波长下吸收能量。幸运的是,PS-DVB提供了自己的自由基来引发自由基聚合。它只需要暴露在工作于253.7 nm的杀菌灯的紫外线下;在以下工作中,为了将氧化官能团接枝到尺寸为100至500微米的PS-DVB珠上,使用了PICVD。直径。空气,臭氧和合成气被评估为前体。对于每种方法,根据改变主要工艺参数的实验计划的结果,开发了最佳功能化方案。通过测角法,FTIR,XPS和AFM对聚苯乙烯薄膜进行处理前后的特性分析。结果证实了酮,羟基,羧基,醚和酯基团的接枝。 Zeta电位计算和分散测试最终表明,与未处理的磁珠相反,在处理后,PS-DVB磁珠被保持在对照注射器内的悬浮液中。本文提出的解决粘附问题的方法将使制药业达到高质量控制标准,同时节省大量时间和金钱。该解决方案还可转移到任何其他面临颗粒粘附问题的行业。未来工作的主要建议是将功能化过程扩展到行业中常见的天然污染物。这将允许生产不仅具有最佳质量的控制注射器套件,而且也将更能代表现实。

著录项

  • 作者

    Labonte, Vickie.;

  • 作者单位

    Ecole Polytechnique, Montreal (Canada).;

  • 授予单位 Ecole Polytechnique, Montreal (Canada).;
  • 学科 Chemical engineering.;Biomedical engineering.;Pharmaceutical sciences.
  • 学位 M.A.Sc.
  • 年度 2016
  • 页码 131 p.
  • 总页数 131
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号