首页> 外文学位 >A prosthetic hand actuation system inspired by the FDS and FDP flexor muscle behaviors.
【24h】

A prosthetic hand actuation system inspired by the FDS and FDP flexor muscle behaviors.

机译:受FDS和FDP屈肌行为启发的假肢手致动系统。

获取原文
获取原文并翻译 | 示例

摘要

This dissertation presents a novel prosthetic hand actuation system and the accompanying mechanical design of a two-finger prototype. The presented actuation scheme is based on a unique perspective of the finger's flexor muscle's strength space when executing a task. The actuation structure developed by this research is a consequence of a more in depth evaluation of the Flexor Digitorum Superficialis (FDS) and the Flexor Digitorum Profundus (FDP) muscles embedded in the forearm which are most responsible for the finger's flexing behavior.Nearly all robotic/prosthetic hands implement the FDS and FDP muscle function. Robotic/prosthetic hands with their actuation structures embedded in the hand itself primarily focus on the degrees of freedom for which the muscles act and how those degrees of freedom can be fully actuated or underactuated to achieve desired tasks. Each actuator is responsible for the full strength space of the desired tasks for its respective joint(s) and as a result their shortcomings with respect to size, strength, efficiency, and/or noise are inherited throughout the entire execution of a task.Robotic/prosthetic hands with their actuation structure existing external to the hand (within a robotic forearm or an external large unit with multiple actuators) generally implement one actuator to replace the FDS muscle and another to replace the FDP muscle. These actuators are often connected to the robotic finger components in a very similar way to that of the human hand. The result is a system with accurate FDS and FDP muscle behavior but whose size restraints prevent such a system from being embedded in the confines of the hand.The actuation scheme developed by this research separates the strength space of the FDS and FDP muscles into two regions. The first region encompasses the lower strength requirements for the more active actions of simple task approach, finer manipulation tasks, and light grasps. The second region encompasses the less active robust tasks with higher strength requirements. The varying behaviors of the two regions drove the selection of two different types of actuators and actuation structures that have the ability to act independently or in parallel to accommodate the associated requirements.Based on a detailed comparison of actuators and actuation structures the small, quick, efficient, and somewhat weak dc motors were implemented in a nearly fully actuated actuation structure to achieve the first region of the FDS/FDP strength space. The light, strong, inefficient, and somewhat slow shape memory alloy actuators achieve the more robust strength movements of the second region of the FDS/FDP strength space. The parallel actuation system has been implemented in the mechanical design of a finger-thumb prototype with 20 degrees of freedom, anthropomorphic dimensions similar to that of the human hand, and weighing only 535g.Validation of the design was performed by targeting three tasks identified in hand movement theory literature to embody the three levels of hand tasks. These included the pinch grasp (used in precision tasks), the lateral grasp (used in intermediate tasks), and the power grasp (used in robust tasks). The geometric ability to perform these grasps was validated via the CAD software and the hand's kinematic model generated in MATLAB(TM). The prototype's structural adequacy during the execution of these three tasks for the maximum applied loadings observed in the FDS/FDP strength space was validated using SolidWorks COSMOS finite element analysis software.A dynamic model was also generated for the hand. However, the dynamic model is only a supplement to this research because the FDS/FDP strength space behavior of primary interest to this research occurs during the actual grasp action, which has insignificant dynamic influences, and is sufficiently validated via a generated static model.Physical testing and simulation using the prototype's static model validated the effectiveness of the developed strength space distribution actuation strategy. During the experiment the finger and thumb were positioned in orientations representing the three grasps above and promises to achieve a good approximation of the full capabilities associated with the human hand without compromising strength, dexterity, appearance, or weight which are common issues associated with prosthetic hands.
机译:本文提出了一种新颖的假肢手致动系统,并提出了两指原型的机械设计。提出的驱动方案基于执行任务时手指的屈肌力量空间的独特视角。这项研究开发的驱动结构是对深埋在前臂中的屈肌指肌(FDS)和深屈肌指肌(FDP)肌肉进行了更深入评估的结果,前者主要负责手指的屈伸行为。 /义肢可实现FDS和FDP肌肉功能。具有嵌入其自身的致动结构的机械手/假手主要关注肌肉所作用的自由度,以及如何完全致动或欠驱动这些自由度以实现所需的任务。每个执行器负责其各个关节所需任务的全部强度空间,因此在整个任务执行过程中都会继承它们在尺寸,强度,效率和/或噪音方面的缺点。 /假手及其致动结构存在于手外部(在机械手前臂或具有多个致动器的外部大型单元内),通常使用一个致动器来替换FDS肌肉,而另一个来替换FDP肌肉。这些致动器通常以与人手非常相似的方式连接到机械手手指组件。结果是一个具有精确FDS和FDP肌肉行为的系统,但其尺寸限制阻止了该系统嵌入手部区域中。本研究开发的驱动方案将FDS和FDP肌肉的力量空间分为两个区域。第一个区域包含较低的强度要求,用于简单任务方法,更精细的操纵任务和较轻的抓握力等更主动的动作。第二个区域包含对活动性要求较低,强度较高的任务。这两个区域的行为变化促使选择了两种不同类型的执行器和致动结构,它们能够独立或并行地起作用以适应相关的需求。在对执行器和致动结构进行详细比较之后,小型,快速,在几乎完全致动的致动结构中安装了高效且略微弱的直流电动机,以实现FDS / FDP强度空间的第一个区域。轻便,坚固,低效且速度稍慢的形状记忆合金致动器实现了FDS / FDP强度空间第二区域的更强劲的强度运动。并联致动系统已经实现在手指拇指原型的机械设计中,该原型具有20个自由度,类似于人手的拟人化尺寸,并且仅重535克。手部运动理论文献体现了手部任务的三个层次。这些包括捏紧抓紧力(用于精密任务),横向抓紧力(用于中间任务)和力量抓紧(用于鲁棒任务)。通过CAD软件和在MATLAB™中生成的手的运动学模型验证了执行这些抓握的几何能力。使用SolidWorks COSMOS有限元分析软件验证了在FDS / FDP强度空间中观察到的最大施加载荷下,执行这三个任务期间原型的结构是否适当,还为该手生成了动态模型。但是,动态模型只是对本研究的补充,因为对本研究最感兴趣的FDS / FDP强度空间行为发生在实际抓握动作期间,它对动态的影响很小,并已通过生成的静态模型进行了充分验证。使用原型的静态模型进行的测试和仿真验证了开发的强度空间分布驱动策略的有效性。在实验过程中,将手指和拇指放在代表上述三个抓握的方向上,并有望在不损害与假手相关的常见问题的强度,灵巧性,外观或重量的前提下,很好地近似人手的全部功能。 。

著录项

  • 作者

    Crawford, Anthony Louis.;

  • 作者单位

    Idaho State University.;

  • 授予单位 Idaho State University.;
  • 学科 Engineering Biomedical.Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 270 p.
  • 总页数 270
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 宗教史、宗教地理;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号