首页> 外文学位 >CORROSION FATIGUE OF AN ALUMINUM-ZINC-MAGNESIUM ALLOY AND AN ALUMINUM-MAGNESIUM - LITHIUM ALLOY.
【24h】

CORROSION FATIGUE OF AN ALUMINUM-ZINC-MAGNESIUM ALLOY AND AN ALUMINUM-MAGNESIUM - LITHIUM ALLOY.

机译:铝-锌-镁合金和铝-镁-锂合金的腐蚀疲劳。

获取原文
获取原文并翻译 | 示例

摘要

Corrosion fatigue and related electrochemical experiments have been conducted on a high purity Al-Zn-Mg ternary alloy and a high purity Al-Mg-Li ternary alloy. The electrochemical experiments were performed in solutions of various concentrations of sodium chloride and sodium sulfate as functions of pH, temperature and degree of aeration. Thin sheets of the alloys were examined in strain controlled fatigue with controlled environmental conditions. Samples were heat treated to obtain the maximum tensile strength, electropolished, and stored in vacuum to remove absorbed hydrogen. Fatigue tests were performed in dry nitrogen gas as a reference environment, and compared with tests in humid nitrogen, distilled water, 0.5 molar sodium sulfate and 0.5 molar sodium chloride.; The corrosion test results indicate that the corrosion potentials of the Al-Mg-Li alloy are considerably more active than those of the Al-Zn-Mg alloy and that the pitting potentials are slightly more active. Therefore, while the lithium alloy pits more readily at the same potential in a given environment, the overpotential or energy required to induce pitting in the lithium containing alloy is greater than that required for Al-Zn-Mg alloys.; The fatigue resistance of the Al-Mg-Li alloy in dry nitrogen is virtually identical to that of the Al-Zn-Mg alloy. However, in aggressive environments, the fatigue lives and fatigue limits were decreased in the Al-Zn-Mg alloy while only the fatigue lives were affected for the Al-Mg-Li alloy. Pre-exposure of the Al-Zn-Mg alloy to humid air followed by testing in dry nitrogen resulted in the same fatigue lives as testing in humid nitrogen. The Al-Mg-Li alloy was unaffected by pre-exposure to humid air. The preexposure embrittlement of the Al-Zn-Mg alloy could be reversed by storage in vacuum.; These results are consistent with the hypothesis that corrosion fatigue of these alloys in environments containing water or water vapor results from hydrogen assisted fracture. The difference in the behavior of the alloys is attributed to either reduced hydrogen absorption or to reduced susceptibility to hydrogen assisted fracture.
机译:已经对高纯度的Al-Zn-Mg三元合金和高纯度的Al-Mg-Li三元合金进行了腐蚀疲劳和相关的电化学实验。电化学实验是在各种浓度的氯化钠和硫酸钠溶液中进行的,这些溶液是pH,温度和曝气程度的函数。在受控环境条件下,在应变控制疲劳下检查了合金薄板。对样品进行热处理以获得最大的拉伸强度,进行电抛光,然后将其存储在真空中以去除吸收的氢。疲劳试验在干燥氮气作为参考环境中进行,并与湿氮气,蒸馏水,0.5摩尔硫酸钠和0.5摩尔氯化钠中的试验进行比较。腐蚀试验结果表明,Al-Mg-Li合金的腐蚀电位比Al-Zn-Mg合金的腐蚀电位高得多,点蚀电位则稍高一些。因此,尽管在给定的环境中锂合金在相同的电位下更容易出现点蚀,但在含锂合金中诱发点蚀所需的过电势或能量要大于Al-Zn-Mg合金所需的过电位或能量。 Al-Mg-Li合金在干燥氮气中的疲劳强度实际上与Al-Zn-Mg合金相同。然而,在侵蚀性环境中,Al-Zn-Mg合金的疲劳寿命和疲劳极限降低,而Al-Mg-Li合金仅疲劳寿命受到影响。将Al-Zn-Mg合金预暴露于潮湿空气中,然后在干燥氮气中进行测试,可得到与在潮湿氮气中进行测试相同的疲劳寿命。 Al-Mg-Li合金不受预暴露于潮湿空气的影响。 Al-Zn-Mg合金的暴露前脆化可以通过真空储存来逆转。这些结果与以下假设相符:在含水或水蒸气的环境中,这些合金的腐蚀疲劳是由氢辅助断裂引起的。合金性能的差异归因于氢吸收减少或氢辅助断裂敏感性降低。

著录项

  • 作者

    RICKER, RICHARD EDMOND.;

  • 作者单位

    Rensselaer Polytechnic Institute.;

  • 授予单位 Rensselaer Polytechnic Institute.;
  • 学科 Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 1983
  • 页码 274 p.
  • 总页数 274
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号