首页> 外文学位 >Active clamping circuit techniques for area-efficient integrated power transistors switching inductive loads.
【24h】

Active clamping circuit techniques for area-efficient integrated power transistors switching inductive loads.

机译:有源钳位电路技术,用于面积有效的集成功率晶体管,用于开关电感负载。

获取原文
获取原文并翻译 | 示例

摘要

Solenoids and motors are high-power inductive actuators that are needed for mechanical motion in numerous power electronic applications such as anti-lock brakes, hard-disk drives, printers, and robotics. The trend of integrating power transistors that control high currents through these types of inductive loads is attractive for reducing overall system costs. Additionally, it has become common to include the clamping function that protects the device against inductive kick-back within the integrated circuit such that external clamping power diodes are no longer necessary. This thesis reviews the process of designing an integrated high-power inductive switching circuit and analyzes the effects clamping voltage has on peak junction temperature during the inductor turn-off phase and the resulting reliability performance of the power transistor. Two new active clamping circuits are introduced that are focused on reducing the overall die area of the clamp and the power transistor itself. The first circuit utilizes a Vbe multiplier to reduce the clamping voltage temperature variation and a method to compensate for base current errors is introduced to enable its use on processes with poor NPN beta performance. This circuit consumes 50% less area than a traditional clamp consisting of a Zener diode stack with comparable temperature compensation achieved from multiple forward biased junctions. The second circuit presents a clamp that dynamically adjusts its clamping voltage based on the supply voltage to achieve reduced average power profiles during inductive kick-back in applications, such as automotive electronics, that have high supply over-voltage fault conditions up to 40V. Such a circuit can dramatically reduce the required power transistor area in applications where repetitive energy stress reliability requirements become the dominant sizing factor over Rdson specifications.;Both proposed active clamping circuits have been fabricated in an 180nm high-voltage BiCMOS process along with integrated power transistor devices. Test results of the Vbe multiplier circuit are given over a -40°C to 160°C temperature range and show a negative temperature coefficient is achieved. Repetitive pulse stress tests have been performed on the adaptive clamping circuit that show exponential improvement in reliability performance as the clamping voltage is reduced for a given inductive load switching condition. Cumulative testing is performed that shows the device wear-out can be reduced by operating at a lower clamping voltage the majority of the lifetime of the device. This is important because the power transistor size can be significantly reduced in most cases due to the improved reliability performance.
机译:螺线管和电动机是大功率感应执行器,在许多电力电子应用中,例如防抱死制动器,硬盘驱动器,打印机和机器人技术,机械运动都需要螺线管和电动机。集成功率晶体管以控制通过这些类型的电感性负载的大电流的趋势对于降低总体系统成本具有吸引力。另外,包括钳位功能已变得很普遍,该功能可保护器件免受集成电路内的感应反冲,从而不再需要外部钳位功率二极管。本文回顾了设计集成大功率电感开关电路的过程,并分析了钳位电压在电感器关断阶段对峰值结温的影响以及功率晶体管的可靠性。引入了两个新的有源钳位电路,它们的重点是减小钳位器和功率晶体管本身的总芯片面积。第一个电路利用Vbe倍增器来减小钳位电压温度变化,并且引入了一种补偿基极电流误差的方法,使其能够用于NPN beta性能较差的工艺。与由齐纳二极管堆栈组成的传统钳位电路相比,该电路消耗的面积减少了50%,并具有通过多个正向偏置结实现的相当的温度补偿。第二个电路提供了一个钳位,该钳位可基于电源电压动态调整其钳位电压,以在具有较高电源过压故障条件且高达40V的应用中(例如,汽车电子产品)在电感反冲期间实现降低的平均功率分布。在重复能量应力可靠性要求已成为超过Rdson规格的主要尺寸因素的应用中,这种电路可以显着减小所需的功率晶体管面积。两种建议的有源钳位电路均采用180nm高压BiCMOS工艺与集成功率晶体管一起制造设备。 Vbe乘法器电路的测试结果在-40°C至160°C的温度范围内给出,并显示出负温度系数。在自适应钳位电路上进行了重复的脉冲应力测试,结果表明,在给定的感性负载切换条件下,降低钳位电压后,可靠性性能将呈指数级提高。进行的累积测试表明,通过在较低的钳位电压下工作,可以在大部分设备使用寿命内减少设备的磨损。这很重要,因为在大多数情况下,由于提高了可靠性,功率晶体管的尺寸可以大大减小。

著录项

  • 作者

    Duryea, Timothy Paul.;

  • 作者单位

    The University of Texas at Dallas.;

  • 授予单位 The University of Texas at Dallas.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 M.S.
  • 年度 2009
  • 页码 76 p.
  • 总页数 76
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 康复医学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号