首页> 外文学位 >Multidisciplinary Dynamic System Design Optimization of Hybrid Electric Vehicle Powertrains
【24h】

Multidisciplinary Dynamic System Design Optimization of Hybrid Electric Vehicle Powertrains

机译:混合动力电动汽车动力总成的多学科动态系统设计优化

获取原文
获取原文并翻译 | 示例

摘要

The design of large-scale, complex systems such as plug-in hybrid electric vehicles (PHEVs) motivates the use of formal optimization methods from both multidisciplinary design optimization (MDO) and optimal control theory. Traditionally, MDO methods have been used to address the integrated design of engineering systems comprised of multiple, interacting components and/or disciplines for superior static system performance. Optimal control theory, on the other hand, is often used to select the best operation strategy of a given dynamic system for superior dynamic system performance. Although many times in practice the optimal design and control of such dynamic systems are addressed almost independently, this approach generally yields sub-optimal overall design solutions. This is because the system architecture, or physical design, is inherently coupled with its operation strategy, or control design. Combined optimal design and control techniques, also known as co-design, can address this issue by using an integrated approach to enable superior design solutions for dynamic systems. This thesis focuses on the co-design of large-scale systems, specifically PHEVs based on simultaneous multidisciplinary dynamic system design optimization (MDSDO) methods using direct transcription (DT). In order to enable a simultaneous approach for optimizing the design and control of the PHEV, a toolbox was developed to design all the critical component of a PHEV powertrain including: electric motor, generator, engine, transmission, and high voltage battery. This toolbox takes the size related design variables as inputs and by using the embedded analytical equations, generates the output performance characteristics of each component. The MDSDO problem formulation is then solved using GPOPS-II,a DT-based MATLAB software for solving multiple-phase optimal control problems. DT-based simultaneous problem formulations in MDSDO has already been successfully used in moderate scale problems, however there has been very few attempts to implement this method on large-scale problems. The current study addresses this issue and examines the practicality of DT-based simultaneous problem formulations in MDSDO for large-scale, complex dynamic systems.
机译:诸如插电式混合动力汽车(PHEV)之类的大规模,复杂系统的设计激发了基于多学科设计优化(MDO)和最优控制理论的形式优化方法的使用。传统上,MDO方法已用于解决工程系统的集成设计问题,该工程系统由多个相互作用的组件和/或学科组成,以提供出色的静态系统性能。另一方面,最优控制理论通常用于选择给定动态系统的最佳操作策略,以实现出色的动态系统性能。尽管在实践中许多次几乎是独立地解决这种动态系统的最佳设计和控制问题,但这种方法通常会产生次优的整体设计解决方案。这是因为系统体系结构或物理设计固有地与其操作策略或控制设计结合在一起。组合的最佳设计和控制技术(也称为协同设计)可以通过使用集成方法为动态系统提供出色的设计解决方案来解决此问题。本文着重于大型系统的协同设计,特别是基于基于直接转录(DT)的同时多学科动态系统设计优化(MDSDO)方法的PHEV。为了实现同时优化PHEV设计和控制的方法,开发了一个工具箱来设计PHEV动力总成的所有关键组件,包括:电动机,发电机,发动机,变速器和高压电池。该工具箱将与尺寸相关的设计变量作为输入,并使用嵌入式分析方程式生成每个组件的输出性能特征。然后,使用基于DT的MATLAB软件GPOPS-II解决MDSDO问题的表述,以解决多阶段最优控制问题。 MDSDO中基于DT的并发问题公式已经成功地用于中等规模的问题,但是很少有尝试在大规模问题上实现此方法。当前的研究解决了这个问题,并研究了在MDSDO中基于DT的同时问题公式对于大型,复杂动态系统的实用性。

著录项

  • 作者

    Houshmand, Arian.;

  • 作者单位

    University of Cincinnati.;

  • 授予单位 University of Cincinnati.;
  • 学科 Mechanical engineering.;Mechanics.;Automotive engineering.;Engineering.
  • 学位 M.S.
  • 年度 2016
  • 页码 67 p.
  • 总页数 67
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号