首页> 外文学位 >ULTIMATE STRENGTH OF TUBULAR JOINTS SUBJECTED TO COMBINED LOADS (FATIGUE, STATIC, OFFSHORE STRUCTURES).
【24h】

ULTIMATE STRENGTH OF TUBULAR JOINTS SUBJECTED TO COMBINED LOADS (FATIGUE, STATIC, OFFSHORE STRUCTURES).

机译:承受组合载荷(疲劳,静态,海上结构)的管接头的最大强度。

获取原文
获取原文并翻译 | 示例

摘要

Nine tests were conducted on double-tee (DT) tubular joints subjected to various combinations of axial load, in-plane bending and out-of-plane bending in the branch. These tests along with three reference tests (axial load alone, in-plane bending alone, and out-of-plane bending) were used to study joint interaction and to develop equations for joint design. It was found that the branch load inter- action was best represented by the following equation: P/P(,u) + (M/M(,u))(,OPB)('1.2) + (M/M(,u))(,IPB)('2.1) = 1.0. The equation of the type used in Supplement 1 to the 13th Edition of the American Petroleum Institute (API) Specification, namely P/P(,u) + 2/(pi) arcsine SQRT.((M/M(,u))(,IPB)('2) + (M/M(,u))(,OPB)('2)) = 1.0 was found to be slightly unconservative when P(,u) and M(,u) are based on experimental results. When API predictions of P(,u) and M(,u) are used, the arcsine equation was very conservative in many instances because M(,u) is underestimated.;The behavior of the connection was critically analyzed in order to develop a design oriented analytical solution for ultimate strength. Several empirical equations exist which yield reasonable predictions of ultimate strength but do not provide insight into the way a joint resists applied load. A ring model was used to develop an analytical solution for the ultimate axial and bending strengths of the DT connection. The solution yielded an estimate of ultimate axial load within 20 percent of that measured. The ring model does not model shell behavior well, which is important in resisting IPB bending loads. The process of developing a solution for ultimate strength revealed that the strength of the chord adjacent to the joint resists a significant amount of applied bending and axial branch load.;Strain gage measurements were used to determine the SCF at the toe of the weld for axial load, in-plane bending and out-of-plane bending. For axial load and in-plane bending, the SCF were 31.7 and 3.9, respectively, which compare favorably with predictions of 34.9 and 4.38 from finite element solutions. For out-of-plane bending, however, the load-stress response was nonlinear with the SCF increasing when the nominal stress increases. The maximum measured SCF for OPB was 18.9 for a nominal branch bending stress of 2.8 ksi.
机译:在双三通(DT)管状接头上进行了九项测试,这些接头在分支中承受了轴向载荷,平面内弯曲和平面外弯曲的各种组合。这些测试与三个参考测试(单独的轴向载荷,单独的面内弯曲和面外弯曲)一起用于研究关节相互作用并开发关节设计方程。发现支路荷载相互作用最好用以下公式表示:P / P(,u)+(M / M(,u))(,OPB)('1.2)+(M / M(, u))(,IPB)('2.1)= 1.0。美国石油协会(API)规范第13版增补1中使用的类型的方程,即P / P(,u)+ 2 /(pi)反正弦SQRT。((M / M(,u))当P(,u)和M(,u)基于时,(,IPB)('2)+(M / M(,u))(,OPB)('2))= 1.0是稍微不保守的实验结果。当使用API​​对P(,u)和M(,u)的预测时,由于低估了M(,u),反正弦方程在许多情况下都非常保守。;对连接行为进行了严格分析,以开发出一个面向设计的分析解决方案,可实现极限强度。存在一些经验方程,这些方程可得出合理的极限强度预测,但无法提供接头抵抗施加载荷的方式的见解。使用环形模型来开发DT连接的极限轴向和弯曲强度的解析解决方案。该解决方案得出的最终轴向载荷估算值在所测值的20%之内。环形模型不能很好地模拟壳体行为,这对于抵抗IPB弯曲载荷很重要。制定极限强度解决方案的过程表明,与接头相邻的弦的强度可抵抗相当大的施加的弯曲和轴向分支载荷。应变计测量用于确定轴向焊缝趾部的SCF载荷,平面内弯曲和平面外弯曲。对于轴向载荷和平面内弯曲,SCF分别为31.7和3.9,这与有限元解决方案的预测值34.9和4.38相比具有优势。但是,对于平面外弯曲,当标称应力增加时,载荷应力响应随SCF的增加而呈非线性。对于2.8 ksi的名义分支弯曲应力,OPB的最大测量SCF为18.9。

著录项

  • 作者

    HOADLEY, PETER WINDELL.;

  • 作者单位

    The University of Texas at Austin.;

  • 授予单位 The University of Texas at Austin.;
  • 学科 Engineering Civil.
  • 学位 Ph.D.
  • 年度 1984
  • 页码 296 p.
  • 总页数 296
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号