首页> 外文学位 >Electron cross field transport modeling in radial-axial hybrid hall thruster simulations.
【24h】

Electron cross field transport modeling in radial-axial hybrid hall thruster simulations.

机译:径向-轴向混合霍尔推进器仿真中的电子交叉场传输建模。

获取原文
获取原文并翻译 | 示例

摘要

A Hall thruster is an electric propulsion device capable of providing continuous low thrust while maintaining high efficiency and propellant utilization. The present study is concerned with the modeling of the interior channel and near-field region of a Hall thruster using a radial-axial hybrid simulation which treats the electrons as a quasi-one-dimensional fluid and the heavy particles using a particle-in-cell approach. A primary challenge in the modeling of Hall thrusters is the treatment of the poorly understood electron conductivity. In most regions of the channel and near-field, the experimentally-determined electron mobility substantially exceeds the classical value. Two possible mechanisms for this anomalous transport are electron wall interactions and azimuthal fluctuations. Since radial-axial codes cannot capture the azimuthal electron dynamics, ad-hoc transport models are frequently imposed.;This work focuses on the development of improved methods for simulating electron transport in radial-axial hybrid Hall thruster simulations. While the implementation of an experimentally-based electron transport model results in reasonable predictions of plasma properties, a second method has been developed which does not require laboratory measurements. Motivated by experimental observations in Hall thrusters and magnetized fusion devices, this semi-empirical model assumes a high base level of transport, but reduces the anomalous transport level in regions of strong axial shear in the azimuthal electron flow. Results are presented which show that this transport model based on shear-suppression of fluctuation-enhanced transport is also capable of predicting reasonable agreement with experimental measurements after optimization of two adjustable parameters. Lastly, the remaining chapters focus on better understanding of the fluctuation-induced transport level in the absence of shear using linearized perturbation models. While it is shown that the axial waves simulated by the hybrid simulation do not result in anomalous transport, coupling of these axial waves into tilted axial-azimuthal waves has the potential to produce the anomalous transport levels observed experimentally. Simulation results also suggest that the experimentally-observed region of reduced mobility near the channel exit may coincide with a transition from azimuthal to axial waves.
机译:霍尔推力器是一种电动推进装置,能够提供连续的低推力,同时保持高效率和推进剂利用率。本研究涉及使用径向-轴向混合模拟对霍尔推力器的内部通道和近场区域进行建模,该模拟将电子视为准一维流体,而将重粒子使用粒子中子粒子处理。细胞方法。霍尔推力器建模中的主要挑战是如何处理人们对电子电导率的了解。在通道和近场的大多数区域中,实验确定的电子迁移率大大超过了经典值。这种异常传输的两种可能机制是电子壁相互作用和方位角起伏。由于径向轴编码无法捕获电子方位角,因此经常采用自组织输运模型。这项工作着重于开发改进的方法以在径向轴混合霍尔推力器模拟中模拟电子输运。虽然基于实验的电子传输模型的实现可以合理预测等离子体的性质,但已经开发出了第二种方法,不需要实验室测量。根据霍尔推力器和磁化聚变装置的实验观察结果,该半经验模型假定了较高的输运基本能级,但降低了方位电子流中强轴向剪切区域的反常输运能级。结果表明,该运输模型基于对波动增强运输的剪切抑制,在优化两个可调参数之后也能够预测与实验测量值的合理一致性。最后,其余各章着重于使用线性摄动模型更好地理解在没有剪切力的情况下由波动引起的传输水平。虽然已显示通过混合仿真模拟的轴向波不会导致异常传输,但是将这些轴向波耦合到倾斜的轴向方位角波中可能会产生实验观察到的异常传输级别。仿真结果还表明,实验观察到的通道出口附近流动性降低的区域可能与从方位波到轴向波的过渡相吻合。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号