首页> 外文学位 >WHISTLER MODE ELECTRON CYCLOTRON RESONANCE HEATING AND EMISSION IN A MAGNETIC MIRROR PLASMA. (VOLUMES I AND II).
【24h】

WHISTLER MODE ELECTRON CYCLOTRON RESONANCE HEATING AND EMISSION IN A MAGNETIC MIRROR PLASMA. (VOLUMES I AND II).

机译:磁镜等离子体中的惠斯勒模式电子回旋共振加热和发射。 (第一和第二卷)。

获取原文
获取原文并翻译 | 示例

摘要

An experimental investigation has been conducted in which whistler mode electron cyclotron heating (ECRH) was performed simultaneously with whistler mode electron cyclotron emission measurements on an axisymmetric magnetic mirror plasma. Results presented include theoretical and experimental studies of the early plasma startup phase, as well as experimental studies of two instability phases. These instabilities are identified as a whistler instability and a magnetohydrodynamics (MHD) flute instability.;Experimentally measured heating rates show good agreement with a numerical simulation code based on rate equations and simplified analytical models of stochastic ECRH. Experimentally observed sensitivity of plasma startup to neutral and gas pressure is also consistent with the rate equation computer model. Improved hot electron trapping is experimentally identified with moving the ECH resonance closer to the mirror midplane.;Enhanced microwave emission at frequencies below the midplane electron cyclotron frequency has been correlated with enhanced electron endloss and radially outward hot electron motion during the whistler instability. Onset of this instability appears consistent with theoretically derived density thresholds for absolute instability. In addition, the experimental evidence suggests a possible instability coupling in which the flute instability is triggered by the whistler instability.;Finally, contributions have been made to the development of magnetic fusion energy technology. This includes contributions to the areas of microwave launching antennas, plasma fueling techniques suitable for whistler mode ECRH startup, high power microwave voltage source switching, and further development of diagnostics most suitable for monitoring ECRH plasma conditions.;Cyclotron emission spectra during the startup phase match that predicted for a "sloshing electron" type distribution based on radiation transport numerical modelling. This sloshing electron distribution has been confirmed by independent Langmuir probe measurements. It is also in good agreement with anisotropic distributions resulting from ECRH as predicted by Fokker-Planck computer simulations.
机译:已经进行了实验研究,其中在轴对称磁镜等离子体上同时进行了惠氏模式电子回旋加速器(ECRH)和惠氏模式电子回旋加速器发射测量。给出的结果包括早期等离子体启动阶段的理论和实验研究,以及两个不稳定阶段的实验研究。这些不稳定性被识别为吹口哨不稳定性和磁流体动力学(MHD)长笛不稳定性。实验测量的加热速率与基于速率方程和随机ECRH简化分析模型的数值模拟代码显示出良好的一致性。实验观察到的等离子体启动对中性和气压的敏感性也与速率方程计算机模型一致。实验证明,通过将ECH共振移近镜面中平面,可以改善热电子俘获的能力;在中平面电子回旋加速器频率以下的频率处增强的微波发射与哨声不稳定期间增强的电子损耗和径向向外的热电子运动相关。这种不稳定性的发作似乎与理论推导的绝对不稳定性的密度阈值一致。此外,实验证据表明,可能存在不稳定的耦合,其中笛子的不稳定性是由吹口哨的不稳定性引起的。最后,为磁聚变能量技术的发展做出了贡献。这包括对微波发射天线,适用于吹口哨模式ECRH启动的等离子燃料技术,高功率微波电压源切换以及最适合监测ECRH等离子条件的诊断学领域的贡献;启动阶段匹配期间的回旋加速器发射光谱根据辐射传输数值模型预测了“电子晃动”类型的分布。这种晃动的电子分布已通过独立的Langmuir探针测量得到证实。它也与Fokker-Planck计算机模拟预测的ECRH导致的各向异性分布非常吻合。

著录项

  • 作者

    BOOSKE, JOHN HENRY.;

  • 作者单位

    University of Michigan.;

  • 授予单位 University of Michigan.;
  • 学科 Plasma physics.
  • 学位 Ph.D.
  • 年度 1985
  • 页码 544 p.
  • 总页数 544
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号