首页> 外文学位 >Assessment of bacterial communities and an iron-reducing bacterium in relation to an engineered bioremediation system designed for the treatment of uranium-nitric acid contaminated groundwater.
【24h】

Assessment of bacterial communities and an iron-reducing bacterium in relation to an engineered bioremediation system designed for the treatment of uranium-nitric acid contaminated groundwater.

机译:与设计用于处理铀-硝酸污染的地下水的工程化生物修复系统有关的细菌群落和铁还原细菌的评估。

获取原文
获取原文并翻译 | 示例

摘要

The elucidation of how populations of interest interact in a given community and how the community responds to stress and perturbations can provide insight into the interplay between stress pathways and gene networks that help optimize bacterial biochemistry. The goal of the present study was to characterize the responses of bacterial communities at multiple levels of resolution to understand microbial biochemical capacity at DOE waste sites. The field work at the Field Research Center of the U.S. Department of Energy, Oak Ridge, TN, used a field scale denitrifying fluidized bed reactor (FBR) for nitrate treatment of the groundwater and a series of wells to stimulate microbial growth via ethanol for in situ U(VI) immobilization (Wu et al. ES&T 41:5716-5723). Bacterial community dynamics were investigated during the initial start-up of the FBR while those from the groundwater of the wells were studied over a 1.5-yr period. In addition, the physiology and the genome of the isolate, Anaeromyxobacter Fw109-5, from the site were studied to examine its potential role in U(VI) remediation. The subsurface environment was altered via engineering controls during successive phases to better understand strategies that would improve the remediation process. Within this framework, the interrelationship of bacterial communities and geochemistry was studied at different spatial and temporal scales to characterize the ecosystem ecology of an engineered system. Bacterial communities from both FBR and groundwater samples were analyzed via clone libraries of partial SSU rRNA genes. Multivariate analyses were applied to correlate the changes in the bacterial communities to the measured physicochemical parameters. Our results from the field experiments indicated that there was an important interaction between the engineering controls that altered the subsurface geochemistry over time that influenced bacterial population responses. Growth study experiments and genomic analysis also revealed insights to the physiological potential of an iron-reducing isolate, Anaeromyxobacter Fw109-5. The strong associations between particular environmental variables and certain population distributions will provide insights into establishing practical and successful remediation strategies in radionuclide-contaminated environments with respect to engineering controls.
机译:对感兴趣的种群如何在给定社区中相互作用以及该社区如何应对压力和摄动的阐明可以提供对压力途径与有助于优化细菌生物化学的基因网络之间相互作用的深入了解。本研究的目的是在多个分辨率水平上表征细菌群落的反应,以了解DOE废物现场的微生物生化能力。位于田纳西州橡树岭的美国能源部田间研究中心的田间工作使用田间规模的反硝化流化床反应器(FBR)来对地下水进行硝酸盐处理,并使用一系列的井通过乙醇刺激微生物的生长。原位U(VI)固定(Wu等人,ES&T 41:5716-5723)。在FBR的初始启动过程中,对细菌群落动力学进行了研究,而在1.5年的时间里,对来自井中地下水的细菌进行了研究。此外,还研究了该部位分离菌株厌氧杆菌Fw109-5的生理学和基因组,以检查其在U(VI)修复中的潜在作用。在后续阶段中,通过工程控制对地下环境进行了更改,以更好地理解可以改善修复过程的策略。在此框架内,研究了细菌群落和地球化学在不同时空尺度上的相互关系,以表征工程系统的生态系统。通过部分SSU rRNA基因的克隆文库分析了FBR和地下水样品中的细菌群落。应用多变量分析将细菌群落的变化与测得的理化参数相关联。我们从现场实验得出的结果表明,工程控制之间存在重要的相互作用,随着时间的推移改变了地下地球化学,从而影响了细菌种群的反应。生长研究实验和基因组分析还揭示了对还原铁分离株厌氧杆菌Fw109-5的生理潜力的见识。特定环境变量与某些人口分布之间的紧密联系将为深入了解在放射性核素污染的环境中建立工程控制方面的实用且成功的补救策略提供见识。

著录项

  • 作者

    Hwang, Chiachi.;

  • 作者单位

    Miami University.;

  • 授予单位 Miami University.;
  • 学科 Biology Microbiology.;Engineering Environmental.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 230 p.
  • 总页数 230
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 微生物学;环境污染及其防治;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号