首页> 外文学位 >Development of a second-generation epoxide-based methodology for the construction of polypropionates: Application to the synthesis of the C1-C7, C8-C12, and C10-C15 polypropionate fragments of lankanolide. Stereoselective construction of all-anti polypropionate modules: Synthesis of the C5-C10 fragment of streptovaricins U and D.
【24h】

Development of a second-generation epoxide-based methodology for the construction of polypropionates: Application to the synthesis of the C1-C7, C8-C12, and C10-C15 polypropionate fragments of lankanolide. Stereoselective construction of all-anti polypropionate modules: Synthesis of the C5-C10 fragment of streptovaricins U and D.

机译:第二代基于环氧化物的聚丙烯酸酯方法的开发:在合成兰卡醇化物的C1-C7,C8-C12和C10-C15聚丙烯酸酯片段中的应用。全抗聚丙烯酸酯模块的立体选择性构建:链霉菌素U和D的C5-C10片段的合成。

获取原文
获取原文并翻译 | 示例

摘要

Polypropionates are a common structural feature of many natural products, which present a broad range of biological activities and therapeutic potential. The polypropionate unit consists of a carbon skeleton with alternating methyl and hydroxy groups with a specific configuration. The construction of these chains has attracted great interest among synthetic chemists due to the challenge represented by the elaboration of their array of contiguous chiral centers. Although, different approaches have been developed for the synthesis of polypropionates, aldol related approaches have been the most widely used methodologies. An approach that has received less attention involves the cleavage of epoxides with a carbon nucleophiles. In this line, several groups have developed different approaches, which involve the stereoselective synthesis of epoxy alcohols and their regioselective cleavage with organocuprates or organoaluminum reagents. The applications of these epoxide-based methodologies to the construction of polypropionate units continues to gain interest because of recent advances in stereoselective epoxidation reactions and regioselective epoxide cleavage processes.Our contribution to this area has been the development of an epoxide-based methodology for polypropionate construction using organoalanes. Indeed, a concise non aldol approach for the stereoselective construction of all- anti polypropionate fragments was developed. In our laboratory the iterative epoxide-based methodology consists of the anti-selective epoxidation of cis homoallylic alcohols using the VO(acac)2-catalyzed conditions followed by epoxide ring opening with a propynyl aluminum reagent as key steps.We have incorporated the use of the Sharpless asymmetric epoxidation and an in situ derivatization methodology for the synthesis of optically active first-generation TIPS-protected epoxy alcohols (1c-f). We have also expanded our approach into a second-generation methodology that uses optically active monoprotected 2,3-epoxy diols as more effective precursors for polypropionate construction. For this, we prepared various monoprotected 2,3- epoxy alkanol derivatives (27a-e) with different protecting groups (i.e., TIPS, TBS, Bn and PMB) via the Sharpless asymmetric epoxidation of the corresponding allylic alcohols. We have shown that the new incorporated free primary hydroxy group of our second-generation TIPS-protected 2,3-epoxy alcohol substrates can be converted into a methyl group, offering an alternative access to the first-generation optically active TIPS-protected epoxides.The incorporation of the primary alcohol in our substrates also increases the flexibility and efficiency in the allylic epoxidation and epoxide-cleavage reactions, allowing us to expand our first-generation method. In addition, we examined the effects of the hydroxy protecting groups (TIPS, TBS, PMB and Bn) in our new substrates and determined their role in the regioselectivity of the epoxide cleavage reactions. These studies were performed systematically exploring different reaction conditions and organoaluminum derivatives. These included trimethylaluminum, diethylpropynylaluminun, diethyltrimethylsilylethynylalane and different Oprotected propargylalanes. Additionally, other studies related to the cleavage of the second-generation TIPS-protected 2,3-epoxy alcohols using Cu-catalyzed alkenyl Grignard reagents were performed.A substrate-controlled stereoselective epoxidation of free and monoprotected homoallylic diols was developed. This second-generation approach was based on the incorporation of a directing primary alcohol at the C2 methyl group, which changes the nature of the vanadium ester intermediate or the m-CPBA facial selectivity providing a new diastereoselectivity manifold for the preparation of 3,4-epoxy alcohols. This modification favored the formation of C2-syn epoxy alcohol, some of which were not previously available using the standard homoallylic alcohol substrates.To further demonstrate the synthetic potential of our second-generation methodology we engaged in extensive studies aimed at the synthesis of the C1-C15 polypropionate chain of lankanolide. Lankanolide is the aglycone of lankamycin. Lankamycin is a 14-membered macrolide antibiotic that exhibits moderate antibacterial activity against a number of Gram-positive microorganisms. The molecule consists of a lactone ring that contains twelve stereogenic centers with a specific configuration.Two complementary linear syntheses of the C1-C7/C8-C15 and C8-C15 polypropionate fragments of lankanolide were performed. For the C1-C7/C8-C15 pathway, two trans epoxides, 54a-syn and 54e-syn, were stereoselectively synthesized in 31% and 21% overall yields from epoxide 27a, respectively, using the vanadium catalyzed procedure. Furthermore, the application of the m-CPBA epoxidation for the synthesis of epoxide 54a-syn showed superior stereoselectivity than the vanadium-catalyzed procedure. The cleavage of epoxides 54e-syn and 54a-syn with a TMS-alkynyl alane produced exclusively the desired 1,3-diol regioisomers 140 and 154, respectively. The challenging anti,syn,syn stereotetrad 140 gave us the opportunity to synthesize the anti-acetonide 149, which was very useful for the elucidation of the relative stereochemistry of the acyclic fragment as well as the measurement of its J coupling constants. (Abstract shortened by UMI.)
机译:聚丙烯酸酯是许多天然产物的共同结构特征,具有广泛的生物学活性和治疗潜力。聚丙烯酸酯单元由具有特定结构的甲基和羟基交替的碳骨架组成。这些链的构建由于其连续的手性中心的排列所代表的挑战而引起了合成化学家的极大兴趣。尽管已经开发了用于合成聚丙烯酸酯的不同方法,但是与醛醇缩合有关的方法已经成为使用最广泛的方法。受到较少关注的方法涉及用碳亲核试剂裂解环氧化物。在这一方面,几组研究人员开发了不同的方法,其中涉及环氧醇的立体选择性合成及其用有机铜酸盐或有机铝试剂的区域选择性裂解。由于立体选择性环氧化反应和区域选择性环氧化物裂解过程的最新进展,这些基于环氧化物的方法在聚丙烯酸酯单元构建中的应用继续引起人们的兴趣。我们对这一领域的贡献是开发了基于环氧化物的聚丙烯酸酯构建方法使用有机铝。实际上,已经开发了用于全抗聚丙烯酸酯片段的立体选择性构建的简洁的非羟醛方法。在我们的实验室中,基于环氧化物的迭代方法包括使用VO(acac)2-催化条件,顺式均丙醇的抗选择性环氧化,然后使用丙炔基铝试剂进行环氧化物开环,这是关键步骤。 Sharpless不对称环氧化和原位衍生化方法用于合成光学活性的第一代TIPS保护的环氧醇(1c-f)。我们还将方法扩展到了第二代方法学中,该方法使用光学活性的单保护2,3-环氧二醇作为聚丙烯酸酯结构的更有效前体。为此,我们通过相应的烯丙醇的Sharpless不对称环氧化反应制备了具有不同保护基团(即TIPS,TBS,Bn和PMB)的各种单保护的2,3-环氧烷醇衍生物(27a-e)。我们已经表明,我们第二代TIPS保护的2,3-环氧醇底物新结合的游离伯羟基可以转化为甲基,为第一代光学活性TIPS保护的环氧化物提供了另一种途径。在我们的底物中掺入伯醇还增加了烯丙基环氧化和环氧化物裂解反应的灵活性和效率,从而使我们能够扩展第一代方法。此外,我们检查了我们新底物中羟基保护基(TIPS,TBS,PMB和Bn)的作用,并确定了它们在环氧化物裂解反应的区域选择性中的作用。这些研究是系统地探索不同的反应条件和有机铝衍生物进行的。这些包括三甲基铝,二乙基丙炔基铝,二乙基三甲基甲硅烷基乙炔基丙烷和不同的O-保护的炔丙基丙氨酸。此外,还进行了其他有关使用Cu催化的烯基格氏试剂裂解第二代TIPS保护的2,3-环氧醇的研究,并开发了游离基和单保护的均烯丙基二醇的底物控制的立体选择性环氧化。此第二代方法基于在C2甲基处引入直接的伯醇,这改变了钒酯中间体或m-CPBA面部选择性的性质,为制备3,4-提供了新的非对映选择性歧管。环氧醇。这种修饰促进了C2-syn环氧醇的形成,其中有些是以前无法使用标准均丙醇底物获得的。为进一步证明我们第二代方法的合成潜力,我们进行了广泛的研究,旨在合成C1 lankanolide -C15聚丙烯酸酯链。兰卡诺利德是兰卡霉素的糖苷配基。兰卡霉素是一种14元大环内酯类抗生素,对多种革兰氏阳性微生物表现出中等的抗菌活性。该分子由一个内酯环组成,该内酯环包含十二个具有特定构型的立体异构中心。对Lankanolide的C1-C7 / C8-C15和C8-C15聚丙烯酸酯片段进行了两个互补的线性合成。对于C1-C7 / C8-C15途径,使用钒催化的方法,分别从环氧化物27a分别以31%和21%的总收率立体选择性地合成了两个反式环氧化物54a-syn和54e-syn。此外,m-CPBA环氧化在环氧化合物54a-syn合成中的应用显示出比钒催化的方法优越的立体选择性。用TMS-炔基铝烷对环氧化物54e-syn和54a-syn的裂解分别仅产生所需的1,3-二醇区域异构体140和154。具有挑战性的反,顺,正立体四联体140为我们提供了合成抗丙酮化物149的机会,这对于阐明无环片段的相对立体化学及其J耦合常数的测量非常有用。 (摘要由UMI缩短。)

著录项

  • 作者

    Rodriguez Berrios, Raul R.;

  • 作者单位

    University of Puerto Rico, Rio Piedras (Puerto Rico).;

  • 授予单位 University of Puerto Rico, Rio Piedras (Puerto Rico).;
  • 学科 Chemistry Organic.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 373 p.
  • 总页数 373
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号