首页> 外文学位 >Springs ecosystem distribution and density for improving stewardship and springs as sources of temperate and tropical perennial streams
【24h】

Springs ecosystem distribution and density for improving stewardship and springs as sources of temperate and tropical perennial streams

机译:春季生态系统分布和密度,以改善管理能力,并作为温带和热带多年生河流的源泉

获取原文
获取原文并翻译 | 示例

摘要

Springs support some of the most diverse and unique ecosystems on Earth. Stewardship of springs ecosystems has been hindered by the lack of knowledge of the distribution and density of springs across landscapes. Death Valley National Park and the State of Arizona in the U.S. are examples of two landscapes with significant knowledge about the distribution and density of springs. Springs data in Death Valley National Park are used to test the application of accumulation curves of spring's density. A spring's specific database of Arizona is used as an example of how to accumulate geospatial information for a large landscape. In both landscapes, springs are highly non-randomly distributed due to emergence in topographically and geologically complex terrain. In addition, springs emerge in clusters of multiple sources; therefore, density depends on the spatial scale of inquiry and the extent to which sources are considered independent. For example, the current inventory of Death Valley National Park estimates springs density between 0.033 - 0.074 springs/km2 depending on how springs are defined, either as individual spring orifices or springs complexes - represented as groups of related springs orifices. When considering springs as individual orifices, the best data estimates that Arizona has a density of 0.035 springs/km 2. These densities are only representative of current datasets because an unknown number of springs remain unmapped in both landscapes. To predict the total number of springs in Death Valley, we used a modified density accumulation curve, involving the number of springs detected in surveys over the past century. This analysis indicates that there may still be additional undocumented springs across the landscape. Knowledge of the distribution and density of the springs across a landscape can assist land and resource managers develop unbiased prioritizations of springs ecosystems for stewardship actions.;Groundwater and surface water supply the vast majority of global freshwater sources. Groundwater discharge serves as a major contributor to surface waters, and may have a growing role as climate change alters global sources of freshwater. Groundwater sources are increasingly threatened by a worldwide boom in groundwater extraction, especially in arid regions of low recharge. The limited surface waters of the arid southwestern U.S. support municipal and agricultural demands and are hotspots of biological diversity. Sources of perennial surface water in the Southwest are threatened by diversions, increased groundwater pumping and prolonged drought. This study investigates groundwater as a source to rivers globally and as sources of perennially flowing steams in Arizona to focus attention on monitoring and preservation of these endangered resources.;A literature review of the world's 20 largest rivers indicates that each has groundwater contributions. A GIS analysis of The Nature Conservancy's mapping of perennial streams and the Springs Stewardship Institute's springs distribution highlights insufficiencies of springs inventories and stream mapping as many perennially flowing streams have no identified groundwater source, defined here as a spring. Through detailed analysis of the Verde River watershed, we found that 80% of perennial streams have mapped groundwater sources and that 55% of perennial streams were misclassified according to the existing perennial streams data set, with many perennial streams over estimated in length.
机译:泉水支持地球上一些最多样化和独特的生态系统。由于缺乏对景观中泉水分布和密度的了解,阻碍了泉水生态系统的管理。死亡谷国家公园和美国亚利桑那州就是两个风景的例子,这些风景对温泉的分布和密度有很深的了解。死亡谷国家公园的弹簧数据用于测试弹簧密度累积曲线的应用。亚利桑那州的一个春季特定数据库被用作示例,说明了如何为一个大型景观积累地理空间信息。在这两种景观中,由于地形和地质复杂地形的出现,泉水高度非随机分布。此外,春季涌现出多种来源的集群。因此,密度取决于调查的空间规模和来源被认为独立的程度。例如,根据死亡谷国家公园的当前清单,估计的弹簧密度在0.033-0.074弹簧/ km2之间,具体取决于弹簧的定义方式,既可以是单个弹簧孔,也可以是复合弹簧-表示为一组相关的弹簧孔。当将弹簧视为单个孔口时,最佳数据估计亚利桑那州的密度为0.035弹簧/ km2。这些密度仅表示当前数据集,因为在两个景观中仍存在未知数量的弹簧。为了预测死亡谷的泉水总数,我们使用了经过修改的密度累积曲线,其中包括过去一个世纪的调查中检测到的泉水数量。该分析表明,整个景观中可能仍然存在其他未记录的温泉。了解整个景观中泉水的分布和密度可以帮助土地和资源管理者制定正确的泉水生态系统优先顺序以进行管理。地下水和地表水为全球绝大多数淡水供应。地下水排放是地表水的主要来源,并且随着气候变化改变全球淡水来源,其作用可能会越来越大。全球范围内地下水开采的迅猛发展,特别是在补给率低的干旱地区,对地下水源的威胁日益增加。美国西南干旱地区有限的地表水满足市政和农业需求,是生物多样性的热点。西南地区多年生地表水的来源受到转移,地下水泵送量增加和长期干旱的威胁。这项研究调查了地下水作为全球河流的来源以及亚利桑那州常年流动的蒸汽的来源,以将注意力集中在监测和保护这些濒临灭绝的资源上。;对世界上20条最大的河流的文献综述表明,每条河流都有地下水的贡献。对大自然保护区多年生河流分布图和Springs Stewardship Institute的春季分布的GIS分析表明,由于许多多年生流水没有确定的地下水源(此处定义为春季),因此春季资源清册和河流制图不足。通过对Verde河流域的详细分析,我们发现80%的多年生河流已绘制了地下水源,并且根据现有的多年生河流数据集,将55%的多年生河流分类错误,其中许多多年生河流的长度估计过长。

著录项

  • 作者

    Junghans, Katie M.;

  • 作者单位

    Northern Arizona University.;

  • 授予单位 Northern Arizona University.;
  • 学科 Water resources management.
  • 学位 M.S.
  • 年度 2016
  • 页码 82 p.
  • 总页数 82
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 新闻学、新闻事业;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号