首页> 外文学位 >PRECISION GEAR GRINDING USING SELF-LEARNING CONTROL STRATEGY (MANUFACTURING, CNC MACHINE TOOL, CAM).
【24h】

PRECISION GEAR GRINDING USING SELF-LEARNING CONTROL STRATEGY (MANUFACTURING, CNC MACHINE TOOL, CAM).

机译:使用自学习控制策略(制造,CNC机床,CAM)进行精密齿轮磨削。

获取原文
获取原文并翻译 | 示例

摘要

This thesis presents a self-learning control strategy which imparts human expertise and newly developed gear grinding methods to a CNC gear grinding machine. Thus the machine has the capability to "learn" from current conditions and to make decisions by itself during the grinding process. These decisions allow the machine to adjust control programs between operations as well as to compensate contouring errors in-process.; The self-learning control strategy is comprised of four control tactics, namely, machine setting adjustment, eccentric blank lay-out, Constant Grinding Force (CGF) control and contouring error Forecasting Compensatory Control (FCC).; The machine setting adjustment tactic updates the grinding parameters according to the calibration of the pressure angle of the grinding wheel. The eccentric blank lay-out tactic estimates the eccentricity of each workpiece, and determines the stocks to be removed from the flanks. The CGF control tactic simulates the motion trajectory of the grinding wheel strokes constrained by a constant chip area removal criterion, and generates a series of constant grinding force NC programs for every tooth flank. These three tactics "learn" from on-machine measurement, and control by computer simulation and NC programming.; The contouring error FCC tactic compensates the disturbance-caused contouring error by on-line monitoring, recursive modeling, 2-step-ahead forecasting, and real-time compensatory control. Its "learning" capability is built into the algorithm of parameter updating for the Recursive Auto Regressive (RAR) model, and the algorithm for contouring error forecasting.; Experimental results show that the grinding efficiency can be increased 3.6 to 5.8 times as compared with conventional gear grinding methods. The single pass grinding profile accuracy can be as high as 4.9(mu)m or 3.9(mu)m (AGMA 14 or 15) for a particular tooth flank.
机译:本文提出了一种自学习控制策略,该策略将人的专业知识和最新开发的齿轮磨削方法赋予了CNC齿轮磨床。因此,该机器具有从当前条件“学习”并在磨削过程中自行做出决定的能力。这些决定使机器可以在操作之间调整控制程序,并补偿加工中的轮廓误差。自学习控制策略包括四种控制策略,即机器设置调整,偏心坯料布局,恒定磨削力(CGF)控制和轮廓误差预测补偿控制(FCC)。机器设置调整策略根据砂轮压力角的校准更新磨削参数。偏心坯料布局策略估计每个工件的偏心率,并确定要从侧面去除的坯料。 CGF控制策略模拟了受恒定切屑区域去除标准约束的砂轮行程的运动轨迹,并为每个齿面生成了一系列恒定的磨削力NC程序。这三种策略是从机上测量中“学习”,并通过计算机仿真和NC编程进行控制。轮廓误差FCC策略通过在线监控,递归建模,2步超前预测和实时补偿控制来补偿由干扰引起的轮廓误差。递归自回归(RAR)模型的参数更新算法和轮廓误差预测算法中内置了其“学习”功能。实验结果表明,与传统的齿轮磨削方法相比,磨削效率可以提高3.6到5.8倍。对于特定的齿面,单道次磨削轮廓精度可以高达4.9μm或3.9μm(AGMA 14或15)。

著录项

  • 作者

    SUN, HOUNG.;

  • 作者单位

    The University of Wisconsin - Madison.;

  • 授予单位 The University of Wisconsin - Madison.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 1986
  • 页码 171 p.
  • 总页数 171
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号