首页> 外文学位 >Effect of carbonate addition on cobaltite cathode performance.
【24h】

Effect of carbonate addition on cobaltite cathode performance.

机译:碳酸盐添加量对钴阴极性能的影响。

获取原文
获取原文并翻译 | 示例

摘要

This study investigated the overpotential performance enhancement of cathodes in low temperature solid oxide fuel cells (LT-SOFCs) due to the addition of carbonates to traditional Ce0.9Gd0.1O2 solid oxide fuel cell (SOFC) electrolytes. It was postulated in this study that this enhancement was due to the protonic conductivity of the carbonates. This provided an electrolyte with a dual conduction mechanism which improves the catalytic performance of the cathode.;This study developed a cost-effective, reliable and commercially scalable manufacturing process for carbonate/Ce0.9Gd0.1O 2 electrolytes. This pressureless sintering method is the first reported in literature, and is a promising replacement for the current hot-pressing technique currently used for these electrolytes.;The electrolyte composition examined was 70 wt% Ce0.9Gd 0.1O2 with 30 wt% carbonates (67 mol% Li2CO 3/33 mol% Na2CO3). The cathode examined in this study was a composite cathode consisting of 50--90 wt% functional cathode material (Gd1-xSrxCoO3 with 10 to 30 mol% Sr doping on the Gd site) with a balance of electrolyte. It was determined that the composite cathode system with 10 wt% electrolyte and 20--30 mol% Sr doping was the optimal composition when operating at 600oC and above, with predicted power densities of 524 and 510 mW/cm2 at 600°C. At operational temperatures between 550°C and 600°C (and potentially lower), it was determined that a composite cathode system with 30 wt% electrolyte and 10--30 mol% Sr doping was the optimal composition.;It was found that the presence of carbonates in the electrolyte decreased the overpotential losses of the cathode by 50--70% at 600°C for system studied; indicating that an improvement in cathodic performance coupled with the high conductivities of the electrolyte is most likely responsible for the high power outputs seen in literature.;The cathode systems investigated were characterised for overpotential loss, conductivity and thermal expansion matching with the electrolyte. This produced results which predicted power outputs for a standard SOFC configuration as high as 970, 524 and 357 mW/cm2 at operational temperatures of 650°C, 600°C and 550°C. The benefits of these high power outputs and their potential to further reduce SOFC operational temperature was discussed.
机译:这项研究调查了由于在传统的Ce0.9Gd0.1O2固体氧化物燃料电池(SOFC)电解质中添加了碳酸盐而在低温固体氧化物燃料电池(LT-SOFC)中提高了阴极的超电势性能。在这项研究中假定这种增强是由于碳酸盐的质子传导性。这提供了一种具有双重传导机制的电解质,可改善阴极的催化性能。这项研究开发了一种经济高效,可靠且商业规模可扩展的碳酸盐/Ce0.9Gd0.1O 2电解质制造工艺。这种无压烧结方法是文献中首次报道的方法,并且是当前用于这些电解质的当前热压技术的有希望的替代方法。;所检查的电解质成分为70 wt%的Ce0.9Gd 0.1O2和30 wt%的碳酸盐(67 mol%Li2CO 3/33 mol%Na2CO3)。在这项研究中检查的阴极是一种复合阴极,由50--90 wt%的功能性阴极材料(Gd1-xSrxCoO3在Gd部位掺杂了10%至30 mol%的Sr)组成,并带有电解质平衡。已确定,在600oC和更高温度下操作时,具有10 wt%电解质和20--30 mol%Sr掺杂的复合阴极系统是最佳组成,在600°C时的预测功率密度为524和510 mW / cm2。在550°C至600°C(可能更低)的工作温度下,确定具有30 wt%电解质和10--30 mol%Sr掺杂的复合阴极体系是最佳组成。电解液中碳酸盐的存在使系统在600°C时阴极的过电位损失降低了50--70%;表明阴极性能的提高以及电解质的高电导率最有可能导致文献中看到的高功率输出。所研究的阴极系统具有与电解质匹配的过电势损耗,电导率和热膨胀特性。产生的结果可预测在650°C,600°C和550°C的工作温度下,标准SOFC配置的功率输出高达970、524和357 mW / cm2。讨论了这些高功率输出的好处及其进一步降低SOFC工作温度的潜力。

著录项

  • 作者

    Kilius, Linas Brandon.;

  • 作者单位

    Queen's University (Canada).;

  • 授予单位 Queen's University (Canada).;
  • 学科 Alternative Energy.;Chemistry Physical.;Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 315 p.
  • 总页数 315
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号