首页> 外文学位 >ANALYSIS OF DEFORMATION-INDUCED HEATING IN TENSILE TESTING USING A FINITE ELEMENT METHOD.
【24h】

ANALYSIS OF DEFORMATION-INDUCED HEATING IN TENSILE TESTING USING A FINITE ELEMENT METHOD.

机译:拉伸试验中变形诱导加热的有限元分析。

获取原文
获取原文并翻译 | 示例

摘要

A numerical method for analyzing non-isothermal viscoplastic deformation problems has been developed. The physical problem is cumbersome because the thermal and deformation effects are coupled both ways, i.e. plastic deformation generates heat and the temperature rise affects material flow behavior. As an application of this method, sheet tensile tests conducted in air have been analyzed using a two-dimensional finite element formation. A modified Bishop's method is used to solve the thermoplasticity problem in decoupled form at each time step. The analysis consists of two main parts: a rigid-viscoplastic finite element method to analyze the deformation, and a transient heat transfer finite element method. Each part is assumed to occur during sufficiently small, consecutive time steps. Using the present method, the various factors affecting the nonisothermal ductility of material and flow characteristics can be investigated. The accuracy of the analysis is confirmed by comparison with experimental tensile test data for several engineering materials. Loss of total elongation by adiabatic deformation reaches 6.2% and 35% for I.F. steel and 304 stainless steel, respectively, illustrating the importance of deformation heating. For the intermediate case in air, both uniform and total elongations decrease with testing speed as a result of a drop in heat transfer to the environment. The competing effect of deformation heating and strain-rate sensitivity of AK steel is also examined and the FEM results showed the "near-invariance" of non-isothermal tensile ductility of this alloy. It is observed that the effect of deformation heating becomes more pronounced as necking develops and at higher testing speeds. The development of a temperature gradient is found to have a detrimental effect on ductility as opposed to the stabilizing effect of rate-sensitivity. Consequently, better formability can be achieved by controlling heat transfer conditions during forming. In addition, several numerical techniques, which often arise in finite element analysis of large deformation problems with high strain localization, are examined and an automatic remeshing technique has been developed.
机译:已经开发了一种用于分析非等温粘塑性变形问题的数值方法。物理问题很麻烦,因为热效应和变形效应是双向耦合的,即塑性变形会产生热量,而温度升高会影响材料的流动性能。作为该方法的一种应用,已使用二维有限元分析方法对在空气中进行的片材拉伸试验进行了分析。修改后的Bishop方法用于在每个时间步解耦形式解决热塑性问题。该分析包括两个主要部分:用于分析变形的刚粘塑性有限元方法和瞬态传热有限元方法。假定每个部分都在足够小的连续时间步长内发生。使用本方法,可以研究影响材料非等温延性和流动特性的各种因素。通过与几种工程材料的拉伸试验数据进行比较,可以确定分析的准确性。绝热变形导致的总伸长率损失达到IF的6.2%和35%。钢和304不锈钢,分别说明了变形加热的重要性。对于空气中的中间情况,由于向环境的热传递下降,均匀伸长率和总伸长率均随着测试速度而降低。还研究了AK钢的形变加热和应变率敏感性的竞争效应,有限元分析结果表明该合金的非等温拉伸塑性具有“近不变性”。可以看出,随着颈缩的发展和在更高的测试速度下,变形加热的影响变得更加明显。发现温度梯度的发展与延展率敏感性的稳定作用相反,对延展性具有有害作用。因此,通过在成形期间控制传热条件,可以实现更好的成形性。此外,研究了几种数值技术,这些数值技术经常出现在具有高应变局部性的大变形问题的有限元分析中,并且已经开发了一种自动重新网格化技术。

著录项

  • 作者

    KIM, YONG HWAN.;

  • 作者单位

    The Ohio State University.;

  • 授予单位 The Ohio State University.;
  • 学科 Applied Mechanics.
  • 学位 Ph.D.
  • 年度 1987
  • 页码 203 p.
  • 总页数 203
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号