首页> 外文学位 >BIPROPELLANT COMBUSTION IN A LIQUID ROCKET COMBUSTION CHAMBER.
【24h】

BIPROPELLANT COMBUSTION IN A LIQUID ROCKET COMBUSTION CHAMBER.

机译:液体火箭燃烧室中的双燃料燃烧。

获取原文
获取原文并翻译 | 示例

摘要

The combustion characteristics of bipropellants, including liquid fuel and liquid oxidizer, are studied on scales of droplet separation distance and droplet clouds analytically to provide the bases of bipropellant combustion modeling in the full-scale computer simulation of a liquid rocket engine. Three combustion modes such as normal combustion, conjugate combustion and composite combustion, are identified in the study of a bipropellant doublet system. It is found that the interaction between bipropellants enhances the burning rates of droplets. This result shows a positive impact of bipropellants on the spray combustion in contrast to the reduction of burning rates in single propellant group combustion.;A comprehensive computer simulation code is developed to analyze the sophisticated bipropellant combustion in liquid rocket engines. A bipropellant group combustion model is built in the computer code to facilitate the determination of various combustion modes, including conjugate and normal droplet combustion and gas phase combustion. Physical submodels of the finite transport rates between droplet phase and gas phase are also adopted to account for the interactions between the two phases. An axisymmetric cylindrical liquid rocket combustion chamber installed with two annular ring injectors is selected to demonstrate the capabilities of the present computer simulation code. Two types of injection process are analyzed; one is characterized by a nonpremixed spray process and the other is a premixed spray process. Selected numerical computations are conducted to illustrate the detailed combustion structure, combustion intensity and combustion modes. The sensitivity study of fuel and oxidizer group combustion numbers shows that combustion efficiency is determined by the competing process of normal combustion, conjugate combustion and gas phase combustion. Therefore, the optimal atomization, though not necessarily as fine as possible, can be predicted under various operating conditions.
机译:通过分析液滴分离距离和液滴云的尺度,研究了包括液体燃料和液体氧化剂在内的双推进剂的燃烧特性,为液体火箭发动机的全尺寸计算机仿真提供了双推进剂燃烧模型的基础。在双推进剂双重峰系统的研究中,确定了三种燃烧模式,例如正常燃烧,共轭燃烧和复合燃烧。发现双推进剂之间的相互作用提高了液滴的燃烧速率。该结果表明,与单一推进剂组燃烧的燃烧速率降低相比,双推进剂对喷雾燃烧产生了积极影响。;开发了一套全面的计算机仿真代码来分析液体火箭发动机中复杂的双推进剂燃烧。在计算机代码中建立了双推进剂组燃烧模型,以帮助确定各种燃烧模式,包括共轭和常规液滴燃烧以及气相燃烧。还采用了液滴相和气相之间的有限传输速率的物理子模型来说明两相之间的相互作用。选择安装有两个环形喷射器的轴对称圆柱液体火箭燃烧室,以演示本计算机仿真代码的功能。分析了两种类型的注射过程:一种是非预混合喷涂工艺,另一种是预混合喷涂工艺。进行选定的数值计算以说明详细的燃烧结构,燃烧强度和燃烧模式。燃料和氧化剂组燃烧数的敏感性研究表明,燃烧效率取决于正常燃烧,共轭燃烧和气相燃烧的竞争过程。因此,可以在各种操作条件下预测最佳雾化,尽管不一定要尽可能精细。

著录项

  • 作者

    JIANG, TSUNG LEO.;

  • 作者单位

    University of Illinois at Chicago.;

  • 授予单位 University of Illinois at Chicago.;
  • 学科 Engineering Aerospace.
  • 学位 Ph.D.
  • 年度 1987
  • 页码 159 p.
  • 总页数 159
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 遥感技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号