首页> 外文学位 >Developing fast and accurate parallel solver for multi-scales biochemical reacting systems.
【24h】

Developing fast and accurate parallel solver for multi-scales biochemical reacting systems.

机译:为多尺度生化反应系统开发快速,准确的并行求解器。

获取原文
获取原文并翻译 | 示例

摘要

Application of mathematical models to real problems from the biological or medical arenas poses challenges in both the modeling and in the computation needed to get predictions from the model that has been formulated, especially if the problem is inherently multi-scaled. Those real-world applications involve situations where different physical phenomena acting on very different time scales occur simultaneously. The ordinary differential equations (ODEs) governing such situations are categorized as stiff ODEs. Stiffness is a challenging property of differential equations (DEs) that prevents conventional explicit numerical integrators from handling a problem efficiently. For such cases, stability (rather than accuracy) requirements dictate the choice of time step size to be very small. Considerable effort in coping with stiffness has gone into developing time-discretization methods to overcome many of the constraints of the conventional methods. Recently, there has been a renewed interest in exponential integrators that have emerged as a viable alternative for dealing effectively with stiffness of ODEs.;Our attention has been focused on a drug based model governed by a system of stiff ODEs within the framework of an innovative drug-drug interaction method based on a three-level Bayesian meta-analysis model including Monte Carlo Markov Chain (MCMC) pharmacokinetic parameter estimation procedure. Underlying the parameter estimation procedure is a need for a fast integration method of the stiff pharmacokinetic equations.;This thesis represents our effort to gain insight into the nature of the pharmacokinetic equations and their speedy and accurate integration. The first aspect of this study involves the development of an integration method that converts a system of differential equation into a system of Volterra integral equations using a quasilinearization step and incorporating initial conditions into the equations. Then we employ either a multi-stage linear interpolation or its combination with successive approximation method to find the solution to the Volterra integral equations. No polynomial interpolant is used in the development of the integration scheme and computation results show an improvement over existing methods for stiff-equations.
机译:将数学模型应用于生物学或医学领域的实际问题,对建模和从已制定的模型中获得预测所需的计算都提出了挑战,特别是如果问题本质上是多尺度的。这些实际应用涉及在不同时间尺度上作用的不同物理现象同时发生的情况。控制这种情况的常微分方程(ODE)归类为刚性ODE。刚度是微分方程(DE)的具有挑战性的属性,它阻止了常规的显式数值积分器有效地解决问题。对于这种情况,稳定性(而不是准确性)要求决定了时间步长的选择非常小。为克服刚度,人们投入了大量精力来开发时间离散化方法,以克服常规方法的许多限制。最近,人们对指数积分器产生了新的兴趣,它们已成为有效处理ODE刚度的可行替代方案。;我们的注意力一直集中在创新模型框架内由刚性ODE系统控制的基于药物的模型上基于三级贝叶斯荟萃分析模型的药物-药物相互作用方法,包括蒙特卡洛马尔可夫链(MCMC)药代动力学参数估计程序。参数估计程序的基础是对刚性药代动力学方程的快速积分方法的需求。;本论文代表了我们对药代动力学方程及其快速准确积分的本质的深入了解。该研究的第一方面涉及一种积分方法的开发,该积分方法使用准线性化步骤并将初始条件合并到方程中,从而将微分方程组转换为Volterra积分方程组。然后,我们采用多阶段线性插值法或其与逐次逼近法的组合来找到Volterra积分方程的解。在积分方案的开发中未使用多项式内插法,并且计算结果表明对现有的刚性方程式方法进行了改进。

著录项

  • 作者

    Bieth, Bruno.;

  • 作者单位

    Purdue University.;

  • 授予单位 Purdue University.;
  • 学科 Mathematics.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 138 p.
  • 总页数 138
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号