首页> 外文学位 >A kinetic and microstructural study of the gamma-to-alpha alumina phase transformation: Effect of controlled nucleation and alternative material transport paths.
【24h】

A kinetic and microstructural study of the gamma-to-alpha alumina phase transformation: Effect of controlled nucleation and alternative material transport paths.

机译:γ到α氧化铝相变的动力学和微观结构研究:受控成核和替代材料传输路径的影响。

获取原文
获取原文并翻译 | 示例

摘要

The present study focused on enhancing the transformation behavior and tailoring the particle characteristics of a boehmite-derived {dollar}alpha{dollar}-Al{dollar}sb2{dollar}O{dollar}sb3{dollar} by controlling nucleation and modifying the growth mechanism during transformation. Controlled nucleation of {dollar}alpha{dollar}-Al{dollar}sb2{dollar}O{dollar}sb3{dollar} was effected by the addition of 0.1 {dollar}mu{dollar}m {dollar}alpha{dollar}-Al{dollar}sb2{dollar}O{dollar}sb3{dollar} seed particles to a boehmite sol precursor. Seed particle concentrations ranged from 0 to 10{dollar}sp{lcub}14{rcub}{dollar} seeds/cm{dollar}sp3{dollar}. The effect of liquid and vapor phase transport paths on {dollar}alpha{dollar}-Al{dollar}sb2{dollar}O{dollar}sb3{dollar} transformation kinetics and particle morphology was studied by adding 10 wt.% V{dollar}sb2{dollar}O{dollar}sb5{dollar} and 5 wt.% AlF{dollar}sb3{dollar}, respectively, to unseeded and seeded {dollar}gamma{dollar}-Al{dollar}sb2{dollar}O{dollar}sb3{dollar} powders.; During solid state transformation of boehmite-derived {dollar}gamma{dollar}-Al{dollar}sb2{dollar}O{dollar}sb3{dollar} powders, {dollar}alpha{dollar}-Al{dollar}sb2{dollar}O{dollar}sb3{dollar} seed particles function as low energy barrier, heterogeneous nucleation sites for {dollar}alpha{dollar}-Al{dollar}sb2{dollar}O{dollar}sb3{dollar}. A simple model where each seed particle is responsible for a single {dollar}alpha{dollar}-Al{dollar}sb2{dollar}O{dollar}sb3{dollar} grain after transformation is in reasonable agreement with microstructural observations. Increasing the seed concentration results in faster transformation rates, a lower apparent activation energy for the {dollar}alpha{dollar}-Al{dollar}sb2{dollar}O{dollar}sb3{dollar} transformation, lower transformation temperatures, and improved microstructures. Below approximately 950{dollar}spcirc{dollar}C the {dollar}alpha{dollar}-Al{dollar}sb2{dollar}O{dollar}sb3{dollar} transformation in seeded aluminas becomes growth limited due to low solid state diffusivities for material transport.; Alumina transport through liquid V{dollar}sb2{dollar}O{dollar}sb5{dollar} occurs by a solution-precipitation mechanism. The advantages of liquid phase transport are not realized in the alumina system unless the energy barrier to {dollar}alpha{dollar}-Al{dollar}sb2{dollar}O{dollar}sb3{dollar} nucleation is lowered and the nucleation frequency increased through {dollar}alpha{dollar}-Al{dollar}sb2{dollar}O{dollar}sb3{dollar} seed particle additions. Both seeding and liquid phase transport result in increased transformation kinetics and transformation temperatures as low as 800{dollar}spcirc{dollar}C. Transformation of seeded {dollar}gamma{dollar}-Al{dollar}sb2{dollar}O{dollar}sb3{dollar} powders in liquid V{dollar}sb2{dollar}O{dollar}sb5{dollar} resulted in fine grained, highly faceted, equiaxed {dollar}alpha{dollar}-Al{dollar}sb2{dollar}O{dollar}sb3{dollar} grains containing approximately 1 wt.% vanadium impurity.; Alumina transport through the vapor phase occurs by a chemical transport reaction involving gaseous AlF{dollar}sb3{dollar} and water vapor. The lower energy barrier and higher diffusivities for vapor transport result in greatly reduced transformation temperatures (i.e., 700{dollar}spcirc{dollar}) and increased transformation rates relative to the liquid phase and solid state systems. Transformation of seeded {dollar}gamma{dollar}-Al{dollar}sb2{dollar}O{dollar}sb3{dollar} in the presence of a fluoride vapor phase results in the formation of 0.5 to 1.0 {dollar}mu{dollar}m single crystal, hexagonal {dollar}alpha{dollar}-Al{dollar}sb2{dollar}O{dollar}sb3{dollar} plates.
机译:本研究的重点是通过控制成核和修饰生长来增强勃姆石衍生的{美元}α{美元} -Al {美元} sb2 {美元} O {美元} sb3 {美元}的转变行为并调整其颗​​粒特性转换过程中的机制。通过添加0.1 {μm} mu {dollar} m {dollar}α{dollar}-可实现{dollar} alpha {dollar} -Al {dollar} sb2 {dollar} O {dollar} sb3 {dollar}的控制形核。 Al {dollar} sb2 {dollar} O {dollar} sb3 {dollar}种子颗粒形成勃姆石溶胶前体。种子颗粒浓度范围为0到10 {dollar} sp {lcub} 14 {rcub} {dollar}种子/ cm {dollar} sp3 {dollar}。通过添加10 wt。%的V {美元,研究了液相和气相传输路径对{美元}α{美元} -Al {美元} sb2 {美元} O {美元} sb3 {美元}的转变动力学和颗粒形态的影响} sb2 {dollar} O {dollar} sb5 {dollar}和5 wt。%AlF {dollar} sb3 {dollar}分别为未​​播种和种子的{dollar} gamma {dollar} -Al {dollar} sb2 {dollar} O {dollar} sb3 {dollar} powders ;;在勃姆石衍生的{美元}γ{美元} -Al {美元} sb2 {美元} O {美元} sb3 {美元}粉末的固态转变过程中,{美元}α{美元} -Al {美元} sb2 {美元} O {dollar} sb3 {dollar}种子颗粒起着低能垒的作用,为{dollar}α{dollar} -Al {dollar} sb2 {dollar} O {dollar} sb3 {dollar}的异质成核位点。一个简单的模型,其中每个种子粒子负责转化后的单个{dollar} alpha {dollar} -Al {dollar} sb2 {dollar} O {dollar} sb3 {dollar}晶粒,这与微观结构观察结果合理地吻合。增加种子浓度可导致更快的转化速率,更低的表观活化能(美元)-Al {美元} sb2 {美元} O {美元} sb3 {美元}转化,较低的转化温度和改善的微结构。低于约950℃时,晶种氧化铝中的{dollar}α{dollar} -Al {dollar} sb2 {dollar} O {dollar} sb3 {dollar}转变在生长中受到限制,这是由于低固态扩散率导致的。物料运输。氧化铝通过液体V {dollar} sb2 {dollar} O {dollar} sb5 {dollar}的迁移是通过溶液沉淀机制发生的。除非降低{dollar}α{dollar} -Al {dollar} sb2 {dollar} O {dollar} sb3 {dollar}成核的能垒,否则不能在氧化铝体系中实现液相传输的优势。到{dollar} alpha {dollar} -Al {dollar} sb2 {dollar} O {dollar} sb3 {dollar}种子颗粒添加量。晶种和液相传输都导致增加的转化动力学和低至800℃的转化温度。液态V {dollar} sb2 {dollar} O {dollar} sb5 {dollar}中的晶种{dollar} gamma {dollar} -Al {dollar} sb2 {dollar} O {dollar} sb3 {dollar}粉末的转化导致晶粒细化;高度多面,等轴的含约1 wt。%钒杂质的{美元}α{美元} -Al {美元} sb2 {美元} O {美元} sb3 {美元}晶粒。氧化铝通过气相的传输是通过涉及气态AlF {sb3 {dol}}和水蒸气的化学传输反应发生的。相对于液相和固态系统,较低的能量垒和较高的蒸气扩散系数导致转化温度大大降低(即700 700spcirc {dollar))并提高了转化率。在氟化物汽相存在下,晶种{dollar} gamma {dollar} -Al {dollar} sb2 {dollar} O {dollar} sb3 {dollar}的转化导致形成0.5至1.0 {dol} mu {dol} m个单晶六方晶{alpha} alpha {dollar} -Al {dollar} sb2 {dollar} O {dollar} sb3 {dollar}板。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号