首页> 外文学位 >Topological measure theory: A study of repleteness and measure repleteness.
【24h】

Topological measure theory: A study of repleteness and measure repleteness.

机译:拓扑度量理论:有关充裕性和度量充裕性的研究。

获取原文
获取原文并翻译 | 示例

摘要

Let {dollar}{lcub}cal L{rcub}{dollar} be a lattice of subsets of the abstract set {dollar}X{dollar}, and {dollar}{lcub}cal A{rcub}{dollar}({dollar}{lcub}cal L{rcub}{dollar}), the algebra generated by {dollar}{lcub}cal L{rcub}{dollar}. We define {dollar}M{dollar}({dollar}{lcub}cal L{rcub}{dollar}) to be all non-negative, finitely additive, finite valued measures on {dollar}{lcub}cal A{rcub}{dollar}({dollar}{lcub}cal L{rcub}{dollar}; {dollar}Msbsigma{dollar}({dollar}{lcub}cal L{rcub}{dollar}) the measures of {dollar}M{dollar}({dollar}{lcub}cal L{rcub}{dollar}) which are {dollar}sigma{dollar}-smooth on {dollar}{lcub}cal L{rcub}{dollar} and {dollar}Msb{lcub}R{rcub}{dollar}({dollar}{lcub}cal L{rcub}{dollar}) those measure of {dollar}M{dollar}({dollar}{lcub}cal L{rcub}{dollar}) which are {dollar}{lcub}cal L{rcub}{dollar}-regular. If {dollar}mu{dollar} {dollar}in{dollar} {dollar}Msb{lcub}R{rcub}{dollar}({dollar}{lcub}cal L{rcub}{dollar}) and {dollar}mu{dollar} {dollar}in{dollar} {dollar}Msbsigma{dollar}({dollar}{lcub}cal L{rcub}{dollar}), we write {dollar}mu{dollar} {dollar}in{dollar} {dollar}Msbsp{lcub}R{rcub}{lcub}sigma{rcub}{dollar}({dollar}{lcub}cal L{rcub}{dollar}) to represent the countably additive {dollar}{lcub}cal L{rcub}{dollar}-regular measures of {dollar}M{dollar}({dollar}{lcub}cal L{rcub}{dollar}). {dollar}Msbtau{dollar}({dollar}{lcub}cal L{rcub}{dollar}) designates those {dollar}mu{dollar} {dollar}in{dollar} {dollar}M{dollar}({dollar}{lcub}cal L{rcub}{dollar}) which are {dollar}tau{dollar}-smooth on {dollar}{lcub}cal L{rcub}{dollar}. If in any of the above definitions, we restrict the measures to be only zero-one valued, the corresponding set is denoted by an {dollar}I{dollar}. Thus {dollar}Isb{lcub}R{rcub}{dollar}({dollar}{lcub}cal L{rcub}{dollar}) are the 0-1 valued measures of {dollar}Msb{lcub}R{rcub}{dollar}({dollar}{lcub}cal L{rcub}{dollar}), and {dollar}Isbsp{lcub}R{rcub}{lcub}sigma{rcub}{dollar}({dollar}{lcub}cal L{rcub}{dollar}) are the 0-1 valued measures of {dollar}Msbsp{lcub}R{rcub}{lcub}sigma{rcub}{dollar}({dollar}{lcub}cal L{rcub}{dollar}) and so on.; In the first part of this dissertation, we investigate various topological properties associated with a lattice {dollar}{lcub}cal L{rcub}{dollar}, such as {dollar}{lcub}cal L{rcub}{dollar} normal, regular, etc. ..., and express these properties in terms of measures from the {dollar}I{dollar}'s. We also do this for pairs of lattices {dollar}{lcub}cal L{rcub}sb2{dollar} {dollar}subset{dollar} {dollar}{lcub}cal L{rcub}sb1{dollar} thereby extending work of (12), (5), (7) and (2). These results are then systematically applied to the Wallman Space {dollar}Isb{lcub}R{rcub}{dollar}({dollar}{lcub}cal L{rcub}{dollar}) and the lattices {dollar}W{dollar}({dollar}{lcub}cal L{rcub}{dollar}) and {dollar}tau W{dollar}({dollar}{lcub}cal L{rcub}{dollar}). In particular, conditions for {dollar}tau W{dollar}({dollar}{lcub}cal L{rcub}{dollar}) to be normal are thoroughly investigated, a similar investigation is carried our for the space {dollar}Isbsp{lcub}R{rcub}{lcub}sigma{rcub}{dollar}({dollar}{lcub}cal L{rcub}{dollar}) with the relative Wallman topology.; In addition, in the first part of the dissertation we give conditions in {dollar}{lcub}cal L{rcub}{dollar} under which {dollar}mu{dollar} {dollar}in{dollar} {dollar}Msbsigma{dollar}({dollar}{lcub}cal L{rcub}{dollar}) or {dollar}mu{dollar} {dollar}in{dollar} {dollar}Msbsigma{dollar}({dollar}{lcub}cal L{rcub}spprime{dollar}) or {dollar}mu{dollar} {dollar}in{dollar} {dollar}Msbtau{dollar}({dollar}{lcub}cal L{rcub}spprime{dollar}) (where {dollar}{lcub}cal L{rcub}spprime{dollar} is the complement lattice) are in {dollar}Msb{lcub}R{rcub}{dollar}({dollar}{lcub}cal L{rcub}{dollar}).; In the second part of the dissertation, the remainders {dollar}Isb{lcub}R{rcub}{dollar}({dollar}{lcub}cal L{rcub}{dollar}) {dollar}-{dollar} {dollar}X{dollar},
机译:令{dollar} {lcub} cal L {rcub} {dollar}为抽象集{dollar} X {dollar}和{dollar} {lcub} cal A {rcub} {dollar}({dollar } {lcub} cal L {rcub} {dollar}),由{dollar} {lcub} cal L {rcub} {dollar}生成的代数。我们将{dollar} M {dollar}({dollar} {lcub} cal L {rcub} {dollar})定义为对{dollar} {lcub} cal A {rcub}的所有非负,有限可加,有限值度量{dollar}({dollar} {lcub} cal L {rcub} {dollar}; {dollar} Msbsigma {dollar}({dollar} {lcub} cal L {rcub} {dollar}){dollar} M {美元}({dollar} {lcub} cal L {rcub} {dollar}),它们在{dollar} {lcub} cal L {rcub} {dollar}和{dollar} Msb { lcub} R {rcub} {dollar}({dollar} {lcub} cal L {rcub} {dollar})的量度{dollar} M {dollar}({dollar} {lcub} cal L {rcub} {dollar} ),它们是{dollar} {lcub} cal L {rcub} {dollar}常规的。如果{dollar} mu {dollar} {dollar} in {dollar} {dollar} Msb {lcub} R {rcub} {dollar}( {dollar} {lcub} cal L {rcub} {dollar} mu {dollar} {dollar} in {dollar} {dollar} Msbsigma {dollar}({dollar} {lcub} cal L {rcub} {美元),我们用{dollar} mu {dollar} {dollar} {dollar} Msbsp {lcub} R {rcub} {lcub} sigma {rcub} {dollar}({dollar} {lcub} cal L {rcub} {dollar})代表可累加的{dollar} {lcub} cal L {rcub} {dollar}-{dollar} M {dollar}({dollar} {lcub} cal L {rcub} {dollar})的常规度量。 {dollar} Msbtau {dollar}({dollar} {lcub} cal L {rcub} {dollar})在{dollar} {dollar} M {dollar}({dollar} {lcub} cal L {rcub} {dollar}),在{dollar} {lcub} cal L {rcub} {dollar}上{dollar} tau {dollar}平滑。如果在以上任何定义中,我们将度量限制为零值一值,则对应的集合用{dollar} I {dollar}表示。因此{dollar} Isb {lcub} R {rcub}(dollar} {lcub} cal L {rcub} {dollar})是{dollar} Msb {lcub} R {rcub}的0-1值度量{dollar}({dollar} {lcub} cal L {rcub} {dollar})和{dollar} Isbsp {lcub} R {rcub} {lcub} sigma {rcub} {dollar}({dollar} {lcub} cal L {rcub} {dollar})是{dollar} Msbsp {lcub} R {rcub} {lcub} sigma {rcub} {dollar}({dollar} {lcub} cal L {rcub} {美元})等。在本文的第一部分中,我们研究了与晶格{dollar} {lcub} cal L {rcub} {dollar}相关的各种拓扑性质,例如{dollar} {lcub} cal L {rcub} {dollar}正态,等等),并以{dollar} I {dollar}的度量来表达这些属性。我们还对成对的{dollar} {lcub} cal L {rcub} sb2 {dollar} {dollar} subset {dollar} {dollar} {lcub} cal L {rcub} sb1 {dollar}进行配对,从而扩展了( 12),(5),(7)和(2)。然后将这些结果系统地应用于Wallman空间{dollar} Isb {lcub} R {rcub} {dollar}({dollar} {lcub} cal L {rcub} {dollar})和晶格{dollar} W {dollar} ({dollar} {lcub} cal L {rcub} {dollar})和{dollar} tau W {dollar}({dollar} {lcub} cal L {rcub} {dollar})。特别是,彻底调查了{dolal} tau W {dollar}({dollar} {lcub} cal L {rcub} {dollar})正常的条件,我们对{dollar} Isbsp { ; lcub} R {rcub} {lcub} sigma {rcub} {dollar}({dollar} {lcub} cal L {rcub} {dollar}),具有相对的Wallman拓扑。另外,在论文的第一部分中,我们给出了{dollar} {lcub} cal L {rcub} {dollar}的条件,在该条件下{dollar} mu {dollar} {dollar} in {dollar} {dollar} Msbsigma {dollar }({dollar} {lcub} cal L {rcub} {dollar})或{dollar} mu {dollar} {dollar} in {dollar} {dol} Msbsigma {dollar}({dollar} {lcub} cal L {rcub } spprime {dollar})或{dollar} mu {dollar} {dollar} in {dollar} Msbtau {dollar}({dollar} {lcub} cal L {rcub} spprime {dollar})(其中{dollar} {lcub} cal L {rcub} spprime {dollar}是补数格)位于{dollar} Msb {lcub} R {rcub} {dollar}({dollar} {lcub} cal L {rcub} {dollar})中。 ;在论文的第二部分,其余的{dollar} Isb {lcub} R {rcub} {dollar}({dollar} {lcub} cal L {rcub} {dollar}){dollar}-{dollar} {dollar} X {dollar},

著录项

  • 作者

    Yallaoui, El-Bachir.;

  • 作者单位

    Polytechnic University.;

  • 授予单位 Polytechnic University.;
  • 学科 Mathematics.; Statistics.
  • 学位 Ph.D.
  • 年度 1989
  • 页码 123 p.
  • 总页数 123
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 数学;统计学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号