首页> 外文学位 >Study of porous radiant burners.
【24h】

Study of porous radiant burners.

机译:多孔辐射燃烧器的研究。

获取原文
获取原文并翻译 | 示例

摘要

The objective of the present study is to generate fundamental knowledge about heat transfer and combustion in porous radiant burners (PRBs) in order to improve their performance. A theoretical heat transfer and combustion model is developed to study the characteristics of PRBs. The model accounts for non-local thermal equilibrium between the solid and gas phases. The solid is assumed to absorb, emit and scatter radiant energy. Combustion is modeled as a one-step global reaction. It is revealed that the flame speed inside the porous medium is enhanced compared to the adiabatic flame speeds due to the higher conductivity of the solid compared to the gas as well as due to radiative preheating of the reactants. The flame speeds near the edges of the porous medium are controlled by conduction alone. Two spatial domains of stable flame speeds are predicted. One spanned the upstream half of the porous region and the other was a narrow region near the downstream edge. The effects of the properties of the porous material on the flame speeds, radiative outputs and efficiencies were investigated. To improve the radiative output from the burner, it is desirable that the porous layer has an optical thickness of about ten. The radiative output and the efficiency is higher for lower scattering albedo. The heat transfer coupling between the solid and gas phases should be high enough to ensure local thermal equilibrium, by choosing a fine porous matrix. Higher solid phase conduction enhances the flame speed and the radiative output. Experiments are performed on a ceramic foam to verify the theoretical findings. The existence of the two stability regions was verified experimentally. The experimental data on flame speeds and radiant outputs for flames stabilized inside the porous medium agreed reasonably well with the theoretical predictions.
机译:本研究的目的是为了获得有关多孔辐射燃烧器(PRB)中的传热和燃烧的基础知识,以提高其性能。建立了理论传热和燃烧模型以研究PRB的特性。该模型说明了固相和气相之间的非局部热平衡。假定该固体吸收,发射和散射辐射能。燃烧被建模为一步一步的全局反应。可以看出,与绝热火焰速度相比,多孔介质内部的火焰速度提高了,这是由于与气体相比固体的电导率更高以及由于反应物的辐射预热所致。多孔介质边缘附近的火焰速度仅通过传导来控制。预测了稳定火焰速度的两个空间域。一个跨越多孔区域的上游一半,另一个跨越下游边缘的狭窄区域。研究了多孔材料的性能对火焰速度,辐射输出和效率的影响。为了提高燃烧器的辐射输出,期望多孔层的光学厚度为约十。对于较低的散射反照率,辐射输出和效率较高。通过选择精细的多孔基质,固相和气相之间的传热耦合应足够高,以确保局部热平衡。更高的固相传导可提高火焰速度和辐射输出。对泡沫陶瓷进行了实验以验证理论结果。通过实验验证了两个稳定区域的存在。关于多孔介质内部稳定的火焰的火焰速度和辐射输出的实验数据与理论预测相当吻合。

著录项

  • 作者

    Sathe, Sanjeev B.;

  • 作者单位

    Arizona State University.;

  • 授予单位 Arizona State University.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 1989
  • 页码 148 p.
  • 总页数 148
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号