首页> 外文学位 >A theoretical and experimental investigation of heat transfer involving melting and freezing in encapsulated lithium hydride salt.
【24h】

A theoretical and experimental investigation of heat transfer involving melting and freezing in encapsulated lithium hydride salt.

机译:在封装的氢化锂盐中进行涉及融化和冻结的传热的理论和实验研究。

获取原文
获取原文并翻译 | 示例

摘要

Thermal energy storage may be used in space-based power generation systems to store waste heat. In systems where the power generation cycle is active only during brief periods, a system employing thermal energy storage can be lighter and more compact than a system that has enough radiator surface to dissipate all of the waste heat as it is generated. Lithium hydride (LiH) salt is well suited for this application, because it has the highest heat of fusion of any ionic salt and melts at a temperature compatible with high-temperature power generation cycles. In one proposed concept for an energy storage system, LiH would be stored in spherical containers arranged in a packed bed, with an externally circulating liquid metal used as the heat transfer fluid.; The purpose of the present study was to investigate, both theoretically and experimentally, the heat transfer characteristics of the individual spherical LiH capsules, including effects due to the solid-liquid phase change. A numerical heat transfer model was developed to simulate the heat transfer performance of spherically encapsulated LiH under both zero-gravity and normal-gravity conditions. The model employs a finite difference formulation and uses an enthalpy-based method to account for phase change. The model also predicts the void that forms as the salt freezes, as well as the effect of natural convection flow in the melted salt.; Experiments were carried out in which instrumented spherical containers filled with LiH were heated rapidly in a high-flux induction furnace to simulate as closely as possible a typical heating cycle in a real thermal energy storage system. The data obtained during these experiments was used to determine the physical behavior of the capsules during melting and solidification, and thus to validate the numerical model. The performance of the numerical model in predicting temperature-time histories of thermocouples embedded in the salt was generally satisfactory, but the model underpredicted the total time required for melting by ten to fifteen percent. Numerical results for zero-gravity and normal-gravity cases were also compared, and conclusions were drawn about the effects of gravity on the thermal behavior of these systems.
机译:热能储存器可用于天基发电系统中以储存废热。在仅在短期内启动发电周期的系统中,采用热能存储的系统比具有足够的散热器表面以散发所有产生的余热的系统更轻巧,更紧凑。氢化锂(LiH)盐非常适合此应用,因为它具有离子盐中最高的熔化热,并且在与高温发电周期兼容的温度下熔融。在能量存储系统的一个提出的概念中,LiH将被存储在布置在填充床中的球形容器中,其中外部循环的液态金属被用作传热流体。本研究的目的是在理论上和实验上研究单个球形LiH胶囊的传热特性,包括由于固液相变化而产生的影响。建立了数值传热模型,以模拟球形封装的LiH在零重力和正重力条件下的传热性能。该模型采用有限差分公式,并使用基于焓的方法来说明相变。该模型还预测了盐冻结时形成的空隙,以及熔融盐中自然对流的影响。进行了实验,将装有LiH的仪器球形容器在高通量感应炉中快速加热,以尽可能接近地模拟真实热能存储系统中的典型加热周期。在这些实验中获得的数据用于确定胶囊在熔化和凝固过程中的物理行为,从而验证数值模型。数值模型在预测嵌入盐中的热电偶的温度-时间历史方面的性能通常令人满意,但是该模型将熔融所需的总时间预测不足了百分之十至百分之十五。还比较了零重力和正重力情况下的数值结果,并得出了有关重力对这些系统热行为的影响的结论。

著录项

  • 作者

    Foote, John Paul.;

  • 作者单位

    The University of Tennessee.;

  • 授予单位 The University of Tennessee.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 1989
  • 页码 117 p.
  • 总页数 117
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号