首页> 外文学位 >A study of dynamic powder consolidation based on a particle-level mathematical model.
【24h】

A study of dynamic powder consolidation based on a particle-level mathematical model.

机译:基于粒子级数学模型的动态粉末固结研究。

获取原文
获取原文并翻译 | 示例

摘要

A mathematical model is developed to investigate the effects of large amplitude shock waves on powder materials during dynamic consolidation. The model is constructed at the particle level, focusing on a region containing a few powder particles and the surrounding interstices. The general equations of continuum mechanics are solved over this region, using initial and boundary conditions appropriate for the consolidation process. Closure of the equation system is obtained using an analytical equation of state; relations are included to account for solid to liquid phase changes. An elastic, perfectly-plastic constitutive law, specifically modified to describe material behavior at high-strain-rates, is applied to the solid materials. To reduce complexity, the model is restricted to two dimensions, therefore individual particles are approximated as infinitely long cylinders rather than spheres. The equation system is solved using standard finite-difference numerical techniques. It is demonstrated that for typical consolidation conditions, energy diffusion mechanisms are insignificant during the rapid densification phase of consolidation.; Using type 304 stainless steel powder material, the particle-level model is used to investigate the mechanisms responsible for particle surface heating and metallurgical bonding during consolidation. It is demonstrated that energy deposition near particle surfaces results both from rapid particle deformation during interstitial filling and large localized impacts occurring at the final instant of interstitial closure; particle interior regions remain at sufficiently low temperatures to avoid microstructural modification. Nonuniform metallurgical bonding is predicted around the particle periphery, ranging from complete fusion to mechanical abutment. Simulation results are used to investigate the detailed wave propagation phenomena at the particle level, providing an improved understanding of this complex behavior.; A variety of parametric studies are conducted including investigations of the effects of stress wave amplitude and rise time, the role of interstitial gases during consolidation, and various geometric aspects including the importance of initial void fraction. The model is applied to a metal matrix composite system to investigate the consolidation of mixtures of differing materials; results of a two-dimensional experiment are included. Available experimental data are compared with simulation results. In general, very good agreement between simulation results and data is obtained.
机译:建立了一个数学模型来研究动态固结过程中大振幅冲击波对粉末材料的影响。该模型是在粒子级别上构建的,重点是包含少量粉末粒子和周围空隙的区域。使用适合于固结过程的初始条件和边界条件,在该区域上求解连续力学的一般方程。方程组的闭合是使用状态解析方程获得的。关系包括在内以说明固相到液相的变化。将弹性的,完美塑性的本构定律应用于固体材料,该定律经过专门修改以描述高应变速率下的材料行为。为了降低复杂度,模型仅限于二维,因此单个粒子近似为无限长的圆柱体而不是球体。使用标准的有限差分数值技术来求解方程组。结果表明,对于典型的固结条件,在固结的快速致密化阶段,能量扩散机制并不重要。使用304型不锈钢粉末材料,使用颗粒级模型研究固结过程中颗粒表面加热和冶金结合的机理。结果表明,粒子表面附近的能量沉积既是由于填隙过程中快速的粒子变形,又是由于填隙的最后瞬间发生了较大的局部冲击。颗粒内部区域保持在足够低的温度下以避免微结构的改变。从完全熔化到机械邻接,预计在颗粒外围周围会出现不均匀的冶金结合。仿真结果用于研究粒子级详细的波传播现象,从而更好地了解这种复杂行为。进行了各种参数研究,包括对应力波幅度和上升时间的影响,间隙气体在固结过程中的作用以及各种几何方面的研究,包括初始空隙率的重要性。该模型被应用于金属基复合材料系统,以研究不同材料混合物的固结。包括二维实验的结果。将可用的实验数据与仿真结果进行比较。通常,在模拟结果和数据之间获得了很好的一致性。

著录项

  • 作者

    Williamson, Richard L.;

  • 作者单位

    University of Idaho.;

  • 授予单位 University of Idaho.;
  • 学科 Engineering Mechanical.; Engineering Materials Science.; Physics General.
  • 学位 Ph.D.
  • 年度 1989
  • 页码 209 p.
  • 总页数 209
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;工程材料学;物理学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号