首页> 外文学位 >Robust control of a magnetic bearing spindle for milling tool path error minimization.
【24h】

Robust control of a magnetic bearing spindle for milling tool path error minimization.

机译:磁轴承主轴的鲁棒控制,可最大程度地减少铣削刀具路径误差。

获取原文
获取原文并翻译 | 示例

摘要

Various milling applications, such as thin rib machining of electronic components or airframe structures, can benefit from high speed machining for improved surface finish, accuracy, and increased metal removal rate. Utilization of a magnetic bearing spindle can not only provide benefits of high speed machining, but can also improve part accuracy. Error compensation, exploiting the ability of a magnetically suspended spindle to translate and tilt, within air gap limitations, provides perturbational corrective motions. This hierarchical error compensation structure was implemented using a microprocessor based error minimization controller providing real-time error compensation based on a pre-calibrated error characterization driven by on-line process monitoring.; A magnetic bearing spindle facility was established including the mechanical, operational, and control system interfacing required to retrofit an S2M B25/500 magnetic spindle system to a Matsuura MC500V vertical milling machine. Ongoing error metrology, along with levitation system identification and modelling, provided the basis for the control system synthesis. An error compensation methodology was derived which provides the ability to correct a general class of cutting force independent, as well as, cutting force dependent, dimensional errors. The cutting process is viewed as an ordered sequence of tool path trajectories. Sharing of numerical control part program codes, augmented by handshaking functions, enables coordination of computer numerical control and error compensation functions along the tool path trajectory. Using feedforward compensation, active magnetic bearing spindle error compensation of several sample error sources was experimentally evaluated. Cutting process dynamic spindle system stiffness and stability, involving magnetic bearings, rotor dynamics, tooling, and the metal removal process require improvement to achieve greater part accuracy and chatter resistance.; Review of metal removal technology innovations reveals a recent emphasis on improved control systems. Concurrently, much theoretical progress in the development of robust, multivariable control system synthesis methods has been reported. Application of these control system structures to the magnetic spindle levitation problem is investigated.
机译:各种铣削应用,例如电子零件或机身结构的细肋加工,都可以从高速加工中受益,以提高表面光洁度,精度并提高金属去除率。利用磁性轴承主轴不仅可以提供高速加工的好处,而且可以提高零件精度。利用磁悬浮主轴在气隙限制内平移和倾斜的能力进行的误差补偿可提供微扰的校正运动。这种分层的误差补偿结构是使用基于微处理器的误差最小化控制器实现的,该控制器基于由在线过程监控驱动的预校准误差特征,提供实时误差补偿。建立了磁轴承主轴设备,包括将S2M B25 / 500磁主轴系统改造为Matsuura MC500V立式铣床所需的机械,操作和控制系统接口。持续的误差计量,以及悬浮系统的识别和建模,为控制系统综合提供了基础。推导了一种误差补偿方法,该方法提供了校正与切削力无关的一般类别以及取决于切削力的尺寸误差的能力。切削过程被视为刀具路径轨迹的有序序列。共享数控功能零件程序代码,并增加了握手功能,可沿刀具路径轨迹协调计算机数控功能和误差补偿功能。使用前馈补偿,通过实验评估了多个样本误差源的主动磁轴承主轴误差补偿。切削过程中动态主轴系统的刚度和稳定性,涉及磁性轴承,转子动力学,工具和金属去除过程,都需要改进以实现更高的零件精度和抗振颤性。对金属去除技术创新的回顾揭示了最近对改进控制系统的重视。同时,已经报道了鲁棒的多变量控制系统综合方法的开发方面的许多理论进展。研究了这些控制系统结构在磁悬浮中的应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号