首页> 外文学位 >Ultrafast K-alpha Thomson scattering from shock compressed matter for use as a dense matter diagnostic.
【24h】

Ultrafast K-alpha Thomson scattering from shock compressed matter for use as a dense matter diagnostic.

机译:来自冲击压缩物质的超快K-alpha Thomson散射,用作致密物质诊断。

获取原文
获取原文并翻译 | 示例

摘要

Material conditions in the high-energy-density-physics regime relevant for the study of planetary formation, the modeling of planetary composition, and for inertial confinement fusion experiments, such as on the future National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory (LLNL), can be produced and studied in the laboratory using high powered lasers that shock compress material to pressures greater than > 1 Mbar. Measurement of the compression and heating of shock-compressed dense matter at high pressures is fundamental in the study and understanding of the physical and chemical properties of these extreme states. Investigation of the behavior of the ionic and elecronic properties in this regime is important to determine the equation of state and thermodynamic properties of materials under extreme conditions, that are not currently well understood.;In previous work, x-ray Thomson scattering has been employed to characterize dense matter conditions, ne > 3 x 10 21cm-3, that cannot be probed using the well established technique of optical Thomson scattering. These experiments employed x-ray probes with a temporal resolution of 100 ps. However, for the full characterization of strong shocks in dense matter, an x-ray source that provides picosecond temporal resolution, i.e. K-alpha x-rays, is desirable.;Presented in this thesis, are the first spectrally and temporally resolved x ray Thomson scattering measurements using ultrafast (10 ps) Ti K-alpha x-rays. These measurements have provided experimental validation for modeling of the compression and heating of shocked matter. The coalescence of two shocks launched into a solid density LiH target by a shaped 6 nanosecond heater beam was observed from rapid heating to temperatures of 2.2 eV, enabling tests of shock timing models, mainly dependent on choice of Equation of State (EOS). Here, the temperature evolution of the target at various times during shock progression was characterized from the intensity of the elastic scattering component. The observation of scattering from plasmons, electron plasma oscillations, at shock coalescence indicates a transition to a dense metallic plasma state in LiH. From the frequency shift of the measured plasmon feature the electron density was directly determined with high accuracy, providing a material compression of a factor of three times solid density. The quality of data achieved in these experiments demonstrates the capability for single-shot dynamic characterization of dense shock compressed matter. The conditions probed in this experiment are relevant for the study of the physics of planetary formation and to characterize inertial confinement fusion targets.;In addition, presented in this thesis are the first ultrafast temporally, spectrally and angularly resolved x-ray Thomson scattering measurements from shock-compressed matter. These experiments allowed the testing of theoretical models used in the multi-shock experiments to infer temperatures, from dependency of the elastic scattering feature intensity on the ion form factor. The experimental spectra provided the absolute elastic and inelastic scattering intensities from the measured density of free electrons. Laser-compressed lithium-hydride samples were well characterized by inelastic Compton and Plasmon scattering of a K-alpha x-ray probe providing independent measurements of temperature and density. The data show excellent agreement with the total intensity and structure when using the two-species form factor and accounting for the screening of ion-ion interactions.;Also presented in this thesis are proof-of-principle x-ray scattering measurements from inertial confinement fusion implosion targets, and a discussion of ongoing and future work. These first measurements provided temperature and density conditions for imploding CH shells for the investigation of the capsule ablator adiabat. Measurement and understanding of the adiabat response to implosion and target conditions is important and must be kept low for optimum fuel compression and target energy yield. Quality of single shot data provided validation of this diagnostic when applied to inertial confinement fusion targets, and demonstrate its use as a powerful probe for the future NIF, at the LLNL.
机译:高能密度物理条件下与行星形成研究,行星组成建模以及惯性约束聚变实验有关的物质条件,例如劳伦斯·利弗莫尔国家实验室未来的国家点火装置(NIF) (LLNL)可以在实验室中使用大功率激光器生产和研究,该激光器可以将材料冲击压缩到大于1 Mbar的压力。在研究和理解这些极端状态的物理和化学性质时,测量高压下的冲击压缩致密物质的压缩和加热是基础。研究这种状态下离子和电子性质的行为对于确定目前尚不十分了解的极端条件下材料的状态方程和热力学性质很重要。在以前的工作中,已使用X射线汤姆森散射表征稠密物质条件,ne> 3 x 10 21cm-3,这是无法使用成熟的光学汤姆森散射技术探测到的。这些实验使用时间分辨率为100 ps的X射线探头。但是,为了充分表征密集物质中的强烈震动,需要提供皮秒级时间分辨率的X射线源,即K-alpha X射线。使用超快速(10 ps)Ti K-alpha X射线进行汤姆森散射测量。这些测量为对冲击物质的压缩和加热进行建模提供了实验验证。在快速加热至2.2 eV的温度下,观察到由6纳秒的成形加热束向固体密度LiH目标发射的两次冲击的合并,从而能够测试冲击定时模型,这主要取决于状态方程(EOS)的选择。在此,从弹性散射成分的强度来表征冲击过程中靶在不同时间的温度变化。在激波聚结处观察到的来自等离子体激元的散射,电子等离子体振荡,表明在LiH中过渡到致密的金属等离子体状态。根据测得的等离激元特征的频移,可以高精度直接确定电子密度,从而将材料压缩为固体密度的三倍。这些实验中获得的数据质量证明了对密集冲击压缩物质进行单次动态表征的能力。本实验探究的条件与研究行星形成的物理学和表征惯性约束聚变目标有关。此外,本论文还提出了首次超快速时空,光谱和角度分辨的X射线汤姆森散射测量冲击压缩物质。这些实验允许测试多冲击实验中使用的理论模型,以根据弹性散射特征强度对离子形状因子的依赖性来推断温度。实验光谱从测得的自由电子密度提供了绝对弹性和非弹性散射强度。激光压缩的氢化锂样品通过K-alpha X射线探针的非弹性Compton和等离子散射得到了很好的表征,可独立测量温度和密度。数据显示在使用两种形态的形状因数并考虑离子-离子相互作用的筛选时,其与总强度和结构具有极好的一致性。;本文还介绍了惯性约束的原理X射线散射测量聚变内爆目标,并讨论正在进行和将来的工作。这些首次测量提供了用于爆破的CH壳的温度和密度条件,用于研究胶囊消融绝热材料。对绝热材料对内爆和目标条件的响应的测量和理解很重要,并且必须保持较低水平,以实现最佳燃料压缩和目标能量产出。当应用于惯性约束聚变目标时,单发数据的质量为该诊断提供了验证,并证明了其在LLNL上作为未来NIF的有力探测工具的用途。

著录项

  • 作者

    Kritcher, Andrea Lynn.;

  • 作者单位

    University of California, Berkeley.;

  • 授予单位 University of California, Berkeley.;
  • 学科 Engineering Nuclear.;Physics Fluid and Plasma.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 167 p.
  • 总页数 167
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号