首页> 外文学位 >Methods and Implementation of Fluid-Structure Interaction Modeling into an Industry-Accepted Design Tool.
【24h】

Methods and Implementation of Fluid-Structure Interaction Modeling into an Industry-Accepted Design Tool.

机译:将流体-结构相互作用建模到行业认可的设计工具中的方法和实现。

获取原文
获取原文并翻译 | 示例

摘要

Fluid--structure interaction (FSI) modeling is a method by which fluid and solid domains are coupled together to produce a single result that cannot be produced if each physical domain was evaluated individually. The work presented in this dissertation is a demonstration of the methods and implementation of FSI modeling into an industry-appropriate design tool. Through utilizing computationally inexpensive equipment and commercially available software, the studies presented in this work demonstrate the ability for FSI modeling to become a tool used broadly in industry.;To demonstrate this capability, the cases studied purposely include substantial complexity to demonstrate the stability techniques required for modeling the inherent instabilities of FSI models that contain three-dimensional geometries, nonlinear materials, thin-walled geometries, steep gradients, and transient behavior. The work also modeled scenarios that predict system failure and optimal design to extend service lifetime, thereby expanding upon current FSI literature. Four independent studies were performed, evaluating three separate modes of failure in FSI models, to demonstrate that FSI modeling is a viable design tool for widespread industry use.;The first study validates FSI modeling techniques by comparing the results of a thin-walled FSI geometry model under hydrostatic forces with existing experimental data.;The second study explored a parametric study that evaluated the factors influencing an FSI model containing a highly complex thermal-fluid fatigue model. This model involved dynamically changing temperature loads resulting in significant thermal expansion that led to material yielding and dynamic fatigue life.;The third study evaluated a thermal-fluid conjugate heat transfer problem. The model was tuned, validated, and optimized for lifetime, and the validation of the system was performed using experimental data.;The final study modeled the highly complex fluid and solid phenomena involved in a peristaltic pump where the goal was to demonstrate that the lifetime performance of the tubing could be altered by changing the geometry, material properties, and operating temperature. The model in this final study combined all the methods and techniques from the three earlier studies and applied them to a thin-walled tube geometry with nonlinear and temperature-dependent material properties to create large solid deformation and fluid motion.
机译:流固耦合(FSI)建模是一种方法,通过该方法流体域和固体域耦合在一起以产生单个结果,如果单独评估每个物理域则无法产生该结果。本文的工作是将FSI建模的方法和实现演示为适用于行业的设计工具。通过利用计算上便宜的设备和可商购的软件,本工作中提出的研究证明了FSI建模成为工业上广泛使用的工具的能力。为了证明这种能力,所研究的案例有目的地包括相当大的复杂性,以证明所需的稳定性技术。用于建模FSI模型的固有不稳定性,该FSI模型包含三维几何,非线性材料,薄壁几何,陡峭的梯度和瞬态行为。该工作还对预测系统故障和优化设计以延长服务寿命的场景进行了建模,从而扩展了当前的FSI文献。进行了四项独立研究,评估了FSI模型中三种不同的失效模式,以证明FSI建模是一种广泛用于工业的可行设计工具;第一项研究通过比较薄壁FSI几何的结果验证了FSI建模技术静力作用下的流体力学模型;具有第二个研究的参数化研究评估了影响包含高度复杂热流体疲劳模型的FSI模型的因素。该模型涉及动态变化的温度负载,从而导致显着的热膨胀,从而导致材料屈服和动态疲劳寿命。第三项研究评估了热流共轭传热问题。针对寿命对模型进行了调整,验证和优化,并使用实验数据对系统进行了验证。最终研究对蠕动泵中涉及的高度复杂的流体和固体现象进行了建模,其目的是证明寿命可以通过更改几何形状,材料属性和工作温度来改变管道的性能。该最终研究中的模型结合了前三个研究中的所有方法和技术,并将其应用于具有非线性和温度相关材料特性的薄壁管几何形状,以产生较大的固体变形和流体运动。

著录项

  • 作者

    Sederstrom, Donn R.;

  • 作者单位

    University of Denver.;

  • 授予单位 University of Denver.;
  • 学科 Mechanical engineering.
  • 学位 Ph.D.
  • 年度 2016
  • 页码 228 p.
  • 总页数 228
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号