首页> 外文学位 >Integrated actuation and energy harvesting in prestressed piezoelectric synthetic jets.
【24h】

Integrated actuation and energy harvesting in prestressed piezoelectric synthetic jets.

机译:预应力压电合成射流中的集成驱动和能量收集。

获取原文
获取原文并翻译 | 示例

摘要

With the looming energy crisis compounded by the global economic downturn there is an urgent need to increase energy efficiency and to discover new energy sources. An approach to solve this problem is to improve the efficiency of aerodynamic vehicles by using active flow control tools such as synthetic jet actuators. These devices are able to reduce fuel consumption and streamlined vehicle design by reducing drag and weight, and increasing maneuverability. Hence, the main goal of this dissertation is to study factors that affect the efficiency of synthetic jets by incorporating energy harvesting into actuator design using prestressed piezoelectric composites.;Four state-of-the-art piezoelectric composites were chosen as active diaphragms in synthetic jet actuators. These composites not only overcome the inherent brittle and fragile nature of piezoelectric materials but also enhance domain movement which in turn enhances intrinsic contributions. With these varying characteristics among different types of composites, the intricacies of the synthetic jet design and its implementation increases. In addition the electrical power requirements of piezoelectric materials make the new SJA system a coupled multiphysics problem involving electro-mechanical and structural-fluid interactions.;Due to the nature of this system, a design of experiments approach, a method of combining experiments and statistics, is utilized. Geometric and electro-mechanical factors are investigated using a fractional factorial design with peak synthetic jet velocity as a response variable. Furthermore, energy generated by the system oscillations is harvested with a prestressed composite and a piezo-polymer. Using response surface methodology the process is optimized under different temperatures and pressures to simulate harsh environmental conditions.;Results of the fractional factorial experimental design showed that cavity dimensions and type of signal used to drive the synthetic jet actuator were statistically significant factors when studying peak jet velocity. The Bimorph (∼50m/s) and the prestressed metal composite (∼45m/s) generated similar peak jet velocities but the later is the most robust of all tested actuators. In addition, an alternate input signal to the composite, a sawtooth waveform, leads to jets formed with larger peak velocities at frequencies above 15Hz. The optimized factor levels for the energy harvesting process were identified as 237.6kPa, 3.7Hz, 1MO and 12°C and the power density measured at these conditions was 24.27microW/mm3.;Finally, the SJA is integrated with an energy harvesting system and the power generated is stored into a large capacitor and a rechargeable battery. After approximately six hours of operation 5V of generated voltage is stored in a 330microF capacitor with the prestressed metal composite as the harvester. It is then demonstrated that energy harvested from the inherent vibrations of a SJA can be stored for later use. Then, the system proposed in this dissertation not only improves on the efficiency of aerodynamic bodies, but also harvests energy that is otherwise wasted.
机译:迫在眉睫的能源危机加上全球经济不景气,迫切需要提高能源效率和发现新能源。解决该问题的一种方法是通过使用主动流量控制工具(例如合成射流致动器)来提高空气动力学车辆的效率。这些设备能够通过减少阻力和重量以及提高可操纵性来减少燃油消耗并简化车辆设计。因此,本论文的主要目的是通过将能量收集纳入使用预应力压电复合材料的执行器设计中来研究影响合成射流效率的因素。;选择了四种最先进的压电复合材料作为合成射流的主动隔膜执行器。这些复合材料不仅克服了压电材料固有的脆性和脆性,而且增强了磁畴运动,从而增强了固有作用。由于不同类型的复合材料具有这些不同的特性,因此合成射流设计及其实施的复杂性增加了。此外,压电材料的电功率要求使新的SJA系统成为一个涉及机电和结构-流体相互作用的耦合多物理场问题。;由于该系统的性质,设计了一种实验方法,一种将实验与统计相结合的方法被利用。使用分数合成设计研究了几何和机电因素,合成射流的峰值速度作为响应变量。此外,利用预应力复合材料和压电聚合物收集由系统振荡产生的能量。使用响应面方法,该过程在不同温度和压力下进行了优化,以模拟恶劣的环境条件。;分数阶乘实验设计的结果表明,在研究峰值射流时,腔尺寸和用于驱动合成射流致动器的信号类型在统计学上是重要的因素速度。 Bimorph(〜50m / s)和预应力金属复合材料(〜45m / s)产生相似的峰值射流速度,但后者是所有测试执行器中最坚固的。此外,复合材料的另一种输入信号(锯齿波形)会导致在高于15Hz的频率下以更大的峰值速度形成射流。能量收集过程的最佳因子水平确定为237.6kPa,3.7Hz,1MO和12°C,在这些条件下测得的功率密度为24.27microW / mm3。最后,SJA与能量收集系统集成在一起产生的电能存储在大电容器和可充电电池中。大约运行六小时后,将5V产生的电压存储在330microF电容器中,其中预应力金属复合材料用作收集器。然后证明了从SJA固有振动中收集的能量可以存储起来以备后用。然后,本文提出的系统不仅提高了空气动力学机构的效率,而且还收集了原本会浪费的能量。

著录项

  • 作者

    Mane, Poorna.;

  • 作者单位

    Virginia Commonwealth University.;

  • 授予单位 Virginia Commonwealth University.;
  • 学科 Engineering Aerospace.;Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 187 p.
  • 总页数 187
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号