首页> 外文学位 >Nonlinear dynamics in biological systems: Actin networks and gene networks.
【24h】

Nonlinear dynamics in biological systems: Actin networks and gene networks.

机译:生物系统中的非线性动力学:肌动蛋白网络和基因网络。

获取原文
获取原文并翻译 | 示例

摘要

Two problems in biological systems are studied: (i) experiments in microscale deformations of actin networks and (ii) a theoretical treatment of the stability of discrete state network models of genetic control.;In the experiments on actin networks, we use laser tweezers to locally deform actin networks at the micron scale as a model of the action of molecular motors and other cellular components, and we image the network during deformation using confocal microscopy. Using these tools, we observe two nonlinear effects. The first observation is that there are two time scales of relaxation in the network: the stress induced by deformation relaxes rather quickly, however, the strain relaxes at a different rate. Additionally, upon removing the deforming force, the initial rate at which the strain relaxes seems to be independent of the amount of stress still in the network. The second observation is that large deformations are irreversible, and imaging the network implies that a large-scale snapping event seems to accompany this irreversibility.;In the theoretical treatment of gene networks, we focus on the stability of their dynamics in response to small perturbations. Previous approaches to stability have assumed uncorrelated random network structure. Real gene networks typically have nontrivial topology significantly different from the random network paradigm. In order to address such situations, we present a general method for determining the stability of large Boolean networks of any specified network topology and predicting their steady-state behavior in response to small perturbations. Additionally, we generalize to the case where individual genes have a distribution of 'expression biases,' and we consider non-synchronous update, as well as extension of our method to non-Boolean models in which there are more than two possible gene states. We find that stability is governed by the maximum eigenvalue of a modified adjacency matrix (lambdaQ), and we test this result by comparison with numerical simulations. We also discuss the possible application of our work to experimentally inferred gene networks and present approximations to lambdaQ in several cases.
机译:研究了生物系统中的两个问题:(i)肌动蛋白网络的微观形变实验;(ii)遗传控制离散状态网络模型的稳定性的理论处理;在肌动蛋白网络的实验中,我们使用激光镊子作为分子马达和其他细胞成分作用的模型,肌动蛋白网络在微米尺度上发生局部变形,我们使用共聚焦显微镜对变形过程中的网络进行成像。使用这些工具,我们观察到两个非线性效应。第一个观察结果是网络中有两个松弛时间尺度:由变形引起的应力相当快地松弛,但是应变以不同的速率松弛。另外,在消除变形力后,应变松弛的初始速率似乎与仍然在网络中的应力大小无关。第二个观察结果是大的变形是不可逆的,对网络进行成像意味着这种不可逆性似乎伴随着大规模的捕捉事件。在基因网络的理论处理中,我们关注于响应小扰动的动力学稳定性。 。先前的稳定性方法假定了不相关的随机网络结构。真实基因网络通常具有非平凡的拓扑结构,与随机网络范式明显不同。为了解决这种情况,我们提出了一种通用方法,用于确定任何指定网络拓扑的大型布尔网络的稳定性,并预测它们对小扰动的稳态行为。此外,我们推广到单个基因具有“表达偏差”分布的情况,并考虑非同步更新,以及将我们的方法扩展到存在两个以上可能基因状态的非布尔模型。我们发现稳定性由修改后的邻接矩阵(lambdaQ)的最大特征值控制,并且我们通过与数值模拟进行比较来测试此结果。我们还将讨论我们的工作在实验推断基因网络中的可能应用,并在几种情况下给出lambdaQ的近似值。

著录项

  • 作者

    Pomerance, Andrew.;

  • 作者单位

    University of Maryland, College Park.;

  • 授予单位 University of Maryland, College Park.;
  • 学科 Physics General.;Biophysics General.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 107 p.
  • 总页数 107
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号