首页> 外文学位 >Nanofabrication with the scanning tunneling microscope.
【24h】

Nanofabrication with the scanning tunneling microscope.

机译:使用扫描隧道显微镜进行纳米加工。

获取原文
获取原文并翻译 | 示例

摘要

We have developed a technique to use the scanning tunneling microscope (STM) to create nanometer-scale structures. We use the STM tip as a localized source of electrons to decompose an organometallic gas, leaving metal atoms on the substrate. By scanning the STM tip over the surface of the substrate, we can create any desired pattern.;We have used the technique in two different STM/vacuum system combinations. The first system which we designed and built to quickly test this deposition scheme, operated in high vacuum. Using this system, we deposited cadmium, aluminum, tungsten, and carbon lines with linewidths down to 10 nm, onto silicon and copper substrates. Using other organometallic gases, we etched 20 nm pits in silicon substrates. We measured the two-probe electrical resistivity of some of the wires as a function of temperature.;The first system was not able to produce high-purity metal lines, nor was it possible to align the structures with pre-existing contact pads. To remedy these problems, we built a new, ultra-high-vacuum (UHV), scanning electron microscope (SEM)/STM combination. The system combines a conventional, high vacuum SEM with a separate UHV chamber for the STM. This instrument has a range of magnifications from 25x to 25,000,000x. The combination allows us to access any area on a substrate within a 2 mm x 2 mm area with the STM tip. Using this instrument, we have written wires with 95% nickel content on silicon substrates. This is by far the highest purity level achieved to date using this technique. Since the wires were aligned with a four-probe contact pad pattern, we were able to measure their four-point resistivity. This measurement, made on a 190 nm linewidth wire, confirmed the high nickel content of the wires.;By varying the tip-to-sample voltage bias, we can adjust the linewidth of the deposited lines. Working at lower bias voltages, we have fabricated nickel wires down to a linewidth of 35 nm although we have not yet succeeded in making these narrow wires electrically continuous. This technique shows great promise for the fabrication of novel devices.
机译:我们已经开发出一种使用扫描隧道显微镜(STM)创建纳米级结构的技术。我们使用STM尖端作为局部电子源来分解有机金属气体,从而在基板上留下金属原子。通过在基材表面上扫描STM尖端,我们可以创建任何所需的图案。;我们在两种不同的STM /真空系统组合中使用了该技术。我们设计和制造的第一套系统可在高真空下快速测试该沉积方案。使用此系统,我们将线宽低至10 nm的镉,铝,钨和碳线沉积到了硅和铜基板上。使用其他有机金属气体,我们在硅基板上蚀刻了20 nm的凹坑。我们测量了某些导线的双探针电阻率随温度的变化。第一个系统无法生产高纯度的金属线,也无法将结构与预先存在的接触垫对齐。为了解决这些问题,我们构建了一种新型的超高真空(UHV)扫描电子显微镜(SEM)/ STM组合。该系统结合了传统的高真空SEM和用于STM的单独的UHV腔室。该仪器的放大倍率范围为25x到25,000,000x。这种组合使我们能够使用STM尖端访问2 mm x 2 mm区域内的基板上的任何区域。使用该仪器,我们在硅基板上编写了镍含量为95%的电线。这是迄今为止使用该技术获得的最高纯度。由于导线与四探针接触垫图案对齐,因此我们能够测量其四点电阻率。在190 nm线宽的导线上进行的此测量证实了导线中镍含量高。通过改变针尖到样品的电压偏置,我们可以调整沉积线的线宽。在较低的偏置电压下工作,我们已经制造出线宽为35 nm的镍线,尽管我们尚未成功地使这些窄线电连续。该技术显示出制造新颖器件的巨大希望。

著录项

  • 作者

    Ehrichs, Edward Erling.;

  • 作者单位

    The University of Texas at Austin.;

  • 授予单位 The University of Texas at Austin.;
  • 学科 Physics Condensed Matter.
  • 学位 Ph.D.
  • 年度 1992
  • 页码 136 p.
  • 总页数 136
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 O49;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号