首页> 外文学位 >Plasticity-damage bounding surface model for concrete under cyclic-multiaxial loading.
【24h】

Plasticity-damage bounding surface model for concrete under cyclic-multiaxial loading.

机译:循环多轴荷载下混凝土的塑性-损伤边界面模型。

获取原文
获取原文并翻译 | 示例

摘要

Concrete exhibits a significant strain-softening behavior beyond the peak stress, and moreover, the mechanism of inelastic deformation in concrete consists of both plastic slip and microcracking. Hence, a combined plasticity and damage mechanics model is proposed for modeling concrete behavior under both multiaxial monotonic and cyclic loadings. The model adopts a bounding surface concept for both plasticity and damage. The introduced plasticity bounding surface is a function of the maximum compressive strain experience by the material, while the damage bounding surface is a function of the accumulated damage parameter. By this definition, both surfaces shrink in size in the stress space consistently with strain and damage. In this model, the material parameters are identified by fitting well-documented test data. The functional dependence of the material parameters on stress history, {dollar}varepsilonsb{lcub}rm max{rcub}{dollar}, and damage parameter allow realistic modeling of the complex cyclic behavior of concrete. The proposed model combines plastic strain with strain due to damage, which account for softening behavior of concrete. Plastic strain components are calculated by using the plastic modulus which is a function of the distance from the current stress point to the bounding surface along the deviatoric stress direction S{dollar}sb{lcub}rm ij{rcub}{dollar}. Similarly, damage growth rate is obtained by the hardening modulus which is a function of the distance defined above. The hardening behavior of concrete is assumed herein to be controlled by both damage and plasticity, while the strain softening regime is controlled by damage processes only. The simultaneous use of the plasticity surface and the damage surface, leads to a constitutive model that accounts for the essential features of concrete such as pressure sensitivity, shear compaction-dilatancy, and stiffness degradation. Comparison of model predictions with the available experimental data has been made and the results show good agreement. The model is computationally efficient and appears promising for implementation in generalized finite element programs.
机译:混凝土表现出超过峰值应力的显着应变软化行为,此外,混凝土的非弹性变形机理包括塑性滑移和微裂纹。因此,提出了组合的塑性和损伤力学模型来模拟多轴单调和循环荷载下的混凝土行为。该模型对可塑性和损伤都采用了边界曲面的概念。引入的塑性边界表面是材料承受的最大压缩应变的函数,而损伤边界表面则是累积损伤参数的函数。根据这个定义,两个表面在应力空间中的尺寸都会随着应变和损坏而不断缩小。在此模型中,材料参数通过拟合记录良好的测试数据来识别。材料参数对应力历史的函数依赖性,以及损伤参数允许对混凝土的复杂循环行为进行实际建模。所提出的模型将塑性应变与由于损伤引起的应变相结合,这是混凝土的软化行为的原因。通过使用塑性模量来计算塑性应变分量,该塑性模量是沿偏应力方向S {dollar} sb {lcub} rm ij {rcub} {dollar}从当前应力点到边界表面的距离的函数。类似地,通过硬化模量获得损伤增长率,该硬化模量是上述距离的函数。本文假定混凝土的硬化行为受损伤和可塑性控制,而应变软化状态仅受损伤过程控制。同时使用可塑性表面和损坏表面会导致本构模型,该模型考虑了混凝土的基本特征,例如压力敏感性,剪切压实膨胀率和刚度降低。将模型预测与可用的实验数据进行了比较,结果显示出很好的一致性。该模型的计算效率很高,并且有望在广义有限元程序中实现。

著录项

  • 作者

    Abu-Lebdeh, Taher Mowafaq.;

  • 作者单位

    Louisiana State University and Agricultural & Mechanical College.;

  • 授予单位 Louisiana State University and Agricultural & Mechanical College.;
  • 学科 Engineering Civil.
  • 学位 Ph.D.
  • 年度 1992
  • 页码 202 p.
  • 总页数 202
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 建筑科学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号