首页> 外文学位 >Fundamental studies on the microstructural and mechanical behavior of polyarylacetylene-derived carbon/carbon composites.
【24h】

Fundamental studies on the microstructural and mechanical behavior of polyarylacetylene-derived carbon/carbon composites.

机译:聚芳基乙炔衍生的碳/碳复合材料的微观结构和力学行为的基础研究。

获取原文
获取原文并翻译 | 示例

摘要

Polyarylacetylene (PAA), a highly cross-linked aromatic polymer, has been investigated as a matrix precursor for carbon/carbon (C/C) composites. PAA has advantages over state-of-the-art phenolic resin systems because of its ease of processability, higher char yield, and lower pyrolysis shrinkage. Unidirectional PAA-derived C/C composites were fabricated in single and multi-tow configurations. Variables such as the processing heat-treatment temperature (HTT) (1100{dollar}spcirc{dollar}C, 1800{dollar}spcirc{dollar}C, 2150{dollar}spcirc{dollar}C, 2400{dollar}spcirc{dollar}C, 2750{dollar}spcirc{dollar}C), type of reinforcement used (T50, E35, E75, E105, E130, P55, P100, PX7, XN70), and matrix boron-dopant concentration were controlled in order to the study their effects on the microstructural and resultant mechanical behavior of these PAA-derived composites. The microstructural development of the matrix was examined at various processing stages using X-ray diffraction, Raman spectroscopy, optical, SEM, and TEM microscopy. Matrices heat-treated to 1100{dollar}spcirc{dollar}C and 1800{dollar}spcirc{dollar}C were amorphous. Upon heat-treatment to 2400{dollar}spcirc{dollar}C, localized graphitization was evident. Higher heat-treatment led to an increase in the degree and extent of graphitization emanating from the fiber/matrix interface. In-situ SEM flexural tests were also conducted in order to study the matrix crack propagation behavior and failure mechanisms of the undoped composites as a function of HTT. The structure of the matrix was shown to strongly influence the fracture behavior of the composite by affecting crack propagation. The tensile strength of the composites was dominated by the matrix zone ahead of the crack tip. The bond strength of resin matrix composite also strongly influenced the final mechanical behavior of composite. This bond strength was a function of the degree of localized matrix orientation, fiber modulus, fiber crystallite size, and processing HTT of the composite. The effect of carborane addition on the microstructural and mechanical properties of these composites was also examined. The graphitization of the matrix material was a function of both dopant concentration and HTT. The extent and degree of graphitization in the matrix was more controllable than the undoped composites. The mechanical behavior of the composites, however, was not only a function of the matrix microstructure, but was also dependant on the location of boron.
机译:聚芳基乙炔(PAA)是一种高度交联的芳族聚合物,已被研究用作碳/碳(C / C)复合材料的基质前体。由于其易于加工,较高的焦炭收率和较低的热解收缩率,因此PAA相对于最新的酚醛树脂体系具有优势。 PAA衍生的单向C / C复合材料以单丝和多丝束构造制造。变量,例如加工热处理温度(HTT)(1100 {dol} spcirc {dollar} C,1800 {dollar} spcirc {dollar} C,2150 {dollar} spcirc {dollar} C,2400 {dollar} spcirc {dollar } C,2750 {dollar} spcirc {dollar} C),所用增强材料的类型(T50,E35,E75,E105,E130,P55,P100,PX7,XN70)和基质硼掺杂剂浓度受到控制,研究它们对这些PAA衍生复合材料的微观结构和所得机械性能的影响。使用X射线衍射,拉曼光谱,光学,SEM和TEM显微镜在各个加工阶段检查了基质的微观结构。热处理到1100spdol {dollar} C和1800 {dollar} spcirc {dollar} C的基体是无定形的。在热处理至2400 {时,明显的局部石墨化。较高的热处理导致从纤维/基质界面产生的石墨化程度和程度的增加。还进行了原位SEM弯曲试验,以研究未掺杂复合材料的基体裂纹扩展行为和破坏机理与HTT的关系。结果表明,基体的结构通过影响裂纹扩展而强烈影响复合材料的断裂行为。复合材料的拉伸强度主要由裂纹尖端之前的基体区域决定。树脂基复合材料的粘结强度也强烈影响复合材料的最终机械性能。该粘合强度是局部基体取向度,纤维模量,纤维微晶尺寸和复合材料的加工HTT的函数。还研究了碳硼烷添加对这些复合材料的微观结构和力学性能的影响。基体材料的石墨化是掺杂剂浓度和HTT的函数。基质中石墨化的程度和程度比未掺杂的复合物更容易控制。然而,复合材料的机械性能不仅是基体微观结构的函数,而且还取决于硼的位置。

著录项

  • 作者

    Zaldivar, Rafael Jesus.;

  • 作者单位

    University of California, Los Angeles.;

  • 授予单位 University of California, Los Angeles.;
  • 学科 Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 1992
  • 页码 221 p.
  • 总页数 221
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号