首页> 外文学位 >On the convergence of ergodic averages over zero density sequences in topological dynamics.
【24h】

On the convergence of ergodic averages over zero density sequences in topological dynamics.

机译:关于遍历平均在零密度序列上的拓扑动力学收敛性。

获取原文
获取原文并翻译 | 示例

摘要

The purpose of this project was to study topological analogs of certain theorems in measurable dynamics. In particular, Bourgain's theorem was studied and found not to exist in topological dynamics. This negative outcome is due to a positive result about interpolation in sequence spaces.; If T is an ergodic endomorphism of the probability space {dollar}(Omega, Sigma, mu),{dollar} then according to Bourgain's Theorem, for any {dollar}rm fin Lsp2(Omega, Sigma, mu{dollar}) {dollar}{dollar}rmlimsb{lcub}ntoinfty{rcub} {lcub}1over n{rcub}sumsbsp{lcub}k=0{rcub}{lcub}n-1{rcub}fleft(Tsp{lcub}ksp2{rcub}xright) = intsbOmega f(x)dmu mu{lcub}-{rcub}a.e.{dollar}{dollar}In general, a sequence {dollar}rm {lcub}nsb{lcub}k{rcub}{rcub}{dollar} can replace the sequence {dollar}rm {lcub}ksp2{rcub}{dollar} in these averages. J. Bourgain describes convergence of these averages for many sequences of zero density. Many theorems in measurable dynamics have analogs in topological dynamics. In this paper, a topological analog to Bourgain's result was studied with negative results. We established that if {dollar}tau{dollar} is a uniquely ergodic continuous transformation of a compact metric space (X, d), then we cannot expect that for every {dollar}rm fin C(X){dollar} {dollar}{dollar}rm limsb{lcub}ntoinfty{rcub}{lcub}1over n{rcub}sumsbsp{lcub}k=0{rcub}{lcub}n-1{rcub}fleft(tausp{lcub}ksp2{rcub}xright){dollar}{dollar}exists everywhere in X. Further, we showed that, for any uniquely ergodic transformation {dollar}tau{dollar} on (X, d), the averages {dollar}{dollar}rm {lcub}1over n{rcub}sumsbsp{lcub}k=0{rcub}{lcub}n-1{rcub} fleft(tausp{lcub}nsb{lcub}k{rcub}{rcub}xright){dollar}{dollar}may not converge as long as {dollar}rm {lcub}nsb{lcub}k{rcub}{rcub}{dollar} is a zero density sequence of integers satisfying the property that {dollar}rm nsb{lcub}k+1{rcub} - nsb{lcub}k{rcub}{dollar} is increasing and unbounded.; We negated Bourgain's result in topological dynamics by means of a positive result, dealing with interpolation in symbolic dynamics. The dynamical system will be (X, {dollar}tau),{dollar} where X = {dollar}{lcub}0, 1{rcub}sp{lcub}rm Z{rcub}{dollar} and {dollar}tau{dollar} is the shift transformation. The interpolation result, which is the highlight of this paper, may be stated as follows: If {dollar}rm y = {lcub}y(n){rcub}in X{dollar} and {dollar}rm {lcub}esb{lcub}k{rcub}{rcub}{dollar} is any sequence of integers satisfying the properties that {dollar}rm {lcub}esb{lcub}k{rcub}{rcub}{dollar} is increasing, and {dollar}rm {lcub}esb{lcub}k+1{rcub} - esb{lcub}k{rcub}{rcub}{dollar} is an increasing unbounded sequence, then there exists {dollar}rm x = {lcub}x(n){rcub}in X{dollar} satisfying (1) x is uniquely ergodic, and (2) for each {dollar}rm nin{lcub}bf Z{rcub}, x(esb{lcub}n{rcub}) = y(n).{dollar}
机译:该项目的目的是研究可测动力学中某些定理的拓扑类似物。特别是,对布尔加因定理进行了研究,发现拓扑动力学中不存在该定理。这个负面结果是由于序列空间内插的正面结果。如果T是概率空间{美元}(Omega,Sigma,mu)的遍历内态同化{美元},那么根据布尔加因定理,对于任何{美元} rm fin Lsp2(Omega,Sigma,mu {dollar}){美元} {dollar} rmlimsb {lcub} ntoinfty {rcub} {lcub} 1比n {rcub} sumsbsp {lcub} k = 0 {rcub} {lcub} n-1 {rcub} fleft(Tsp {lcub} ksp2 {rcub} xright )= intsbOmega f(x)dmu mu {lcub}-{rcub} ae {dollar} {dollar}通常,序列{dollar} rm {lcub} nsb {lcub} k {rcub} {rcub} {dollar}可以在这些平均值中替换序列{dollar} rm {lcub} ksp2 {rcub} {dollar}。 J. Bourgain描述了许多零密度序列的这些平均值的收敛性。可测量动力学中的许多定理在拓扑动力学中具有类似物。在本文中,对布尔加因结果的拓扑类似物进行了研究,但结果却是负面的。我们确定,如果{dollar} tau {dollar}是紧凑度量空间(X,d)的唯一遍历遍历的连续变换,那么我们就不能期望对于每个{dollar} rm fin C(X){dollar} {dollar} {dollar} rm limsb {lcub} ntoinfty {rcub} {lcub} 1比n {rcub} sumsbsp {lcub} k = 0 {rcub} {lcub} n-1 {rcub} fleft(tausp {lcub} ksp2 {rcub} xright ){dollar} {dollar}存在于X各处。此外,我们表明,对于(X,d)上任何独特的遍历变换{dollar} tau {dollar},均值{dollar} {dollar} rm {lcub} 1over n {rcub} sumsbsp {lcub} k = 0 {rcub} {lcub} n-1 {rcub} fleft(tausp {lcub} nsb {lcub} k {rcub} {rcub} xright){dollar} {dollar}只要{dollar} rm {lcub} nsb {lcub} k {rcub} {rcub} {dollar}是一个零密度整数序列即可满足{dollar} rm nsb {lcub} k + 1 {rcub} -nsb {lcub} k {rcub} {dollar}不断增加且不受限制。我们用正结果否定了布尔加因结果在拓扑动力学中的作用,该结果涉及符号动力学中的插值。动力学系统将是(X,{dollar} tau),{dollar},其中X = {dollar} {lcub} 0,1 {rcub} sp {lcub} rm Z {rcub} {dollar}和{dollar} tau {美元}是转变的转变。插值结果是本文的重点,可以这样表示:如果X {dollar}中的{dollar} rm y = {lcub} y(n){rcub}和{dollar} rm {lcub} esb { lcub} k {rcub} {rcub} {dollar}是满足{dollar} rm {lcub} esb {lcub} k {rcub} {rcub} {dollar}递增且{dollar} rm的属性的任何整数序列{lcub} esb {lcub} k + 1 {rcub}-esb {lcub} k {rcub} {rcub} {dollar}是一个递增的无界序列,然后存在{dollar} rm x = {lcub} x(n) {rcub} in X {dollar}满足(1)x是唯一遍历的,并且(2)对于每个{dollar} rm nin {lcub} bf Z {rcub},x(esb {lcub} n {rcub})= y (n)。{dollar}

著录项

  • 作者

    Burns, David Richard.;

  • 作者单位

    North Dakota State University.;

  • 授予单位 North Dakota State University.;
  • 学科 Mathematics.
  • 学位 Ph.D.
  • 年度 1993
  • 页码 106 p.
  • 总页数 106
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 数学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号